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Abstract: Whispering gallery modes are known for possessing orbital angular momentum,
however the interplay of local spin density, orbital angular momentum, and the near-field
interaction with quantum emitters is far less explored. Here, we study the spin-orbit interaction of
a circularly polarized dipole with the whispering gallery modes (WGMs) of a spherical resonator.
Using an exact dyadic Green’s function approach, we show that the near-field interaction between
the photonic spin of a circularly polarized dipole and the local electromagnetic spin density
of whispering gallery modes gives rise to unidirectional behaviour where modes with either
positive or negative orbital angular momentum are excited. We show that this is a manifestation
of spin-momentum locking with the whispering gallery modes of the spherical resonator. We
also discuss requirements for possible experimental demonstrations using Zeeman transitions in
cold atoms or quantum dots, and outline potential applications of these previously overlooked
properties. Our work firmly establishes local spin density, momentum and decay as a universal
right-handed electromagnetic triplet for near-field light-matter interaction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spin-momentum locking explains the origin of unidirectional chiral phenomena in both electronic
and photonic systems [1–8]. In topological insulators, spin-polarized edge modes have a spin
direction that is dependent on the propagation direction of the modes [4, 9]. In photonics, the
near-field interaction between a circularly polarized emitter and a metal interface gives rise to
the unidirectional propagation of surface plasmon polaritons [5, 6, 10–12]. This unidirectional
behavior has also been observed in the propagation of HE11 modes in optical fibers coupled to a
trapped atom [7]. Alternative approaches for obtaining unidirectional chiral phenomena include
the use of optical resonators with a broken symmetry; for example, using spatially deformed
resonators [13], broken time-reversal symmetric resonators [14], or rotating resonators [15].

In this work, we present a manifestation of spin-momentum locking with the whispering gallery
modes of a 3D spherical microresonator coupled to a circularly polarized emitter. Spin-momentum
locking arises naturally in the description of evanescent electromagnetic fields through Maxwell’s
equations [16], resulting in a well-defined vector triplet for the electromagnetic spin, momentum,
and decay vectors (shown in Fig. 1(a)). Although whispering gallery modes are not naturally
described by propagating or evanescent plane waves, we demonstrate that whispering gallery
modes also obey spin-momentum locking manifested by the strong field confinement of these
modes. We should note that while the electromagnetic spin of guided modes can be probed
by optical force measurements [17–20], probing the electromagnetic spin of an emitter faces
complexities due to the interaction between the source and the probing system in the near-field
limit. A universally accepted definition of photonic spin in the presence of sources remains an
open question for this reason [21].
Here, we demonstrate that the whispering gallery modes of a spherical resonator form an
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excellent platform for studying the interaction of spin-polarized quantum radiation sources and
the electromagnetic spin of confined modes. In particular, we reveal that the spin of an emitter
effectively couples to the local spin density of whispering gallery modes and ultimately gives
rise to the unidirectional propagation of orbital angular momentum modes inside the spherical
resonator. The origin of the electromagnetic spin of a quantum emitter is the atomicσ± transitions
(shown in Fig. 1(b)) which can be modeled by a circularly polarized dipole. Using a numerically
exact 3D Dyadic Green function approach, we also show it is possible to selectively excite
particular TE and TM modes with specific radial (nr ) and total orbital angular momentum (l)
numbers. Finally, we demonstrate it is possible to induce unidirectional coupling between the
Zeeman transitions of an atom [22] or a quantum dot [23] and the whispering gallery modes with
either positive or negative orbital angular momentum. Similar observations have been made for
2D WGMs in microdisk resonators [13,14] as well as 3D WGMs of spherical resonators [24].
There is, however, to the best of our knowledge, a theoretical gap in the studies of spin properties
of whispering gallery modes in a 3D spherical resonator due to the added complexity [25].

Our results should be experimentally observable by methods using spherical silica resonators
and tapered fiber coupling (Fig. 2) [24, 26]. Our proposed experiments will detect directional
out-coupling of whispering gallery modes with positive (negative) orbital angular momentum
which propagate only along the positive (negative) direction inside the fiber. In the setup proposed
in Fig. 2, the Zeeman transitions of the quantum source are accessed in the excited state using
an optical pump with the application of a magnetic field to split the degeneracy of σ+ and σ−
transitions. By tuning the resonator to the σ− transition, for instance, WGMs with positive
orbital angular momentum are preferentially excited. When coupled to a tapered fiber placed in
the near-field of the resonator, the energy propagates in a unidirectional manner inside the fiber.
Changing to a σ+ transition instead would reverse the propagation direction inside the fiber and
serve as a clear signature of the spin photonic effect.

2. Photonic spin in spherical whispering gallery modes

The modes of a spherical resonator are found by solving Maxwell’s equations using appropriate
boundary conditions in the spherical coordinate representation [28, 29]. Each mode is labeled by
three eigennumbers: nr, l, and m where nr = 1, 2, 3, · · · is the radial eigennumber while l and
m = −l,−l + 1, · · · ,+l − 1,+l denote the orbital angular momentum eigennumbers through the
eigenvalue relations LLL2ψ = l(l + 1)ψ and Lzψ = mψ, where ψ is either the electric or magnetic
field, LLL = rrr × ∇, and Lz = −i ∂∂φ . These relations indicate that m is the projection of OAM along
the z axis and modes with positive (negative) m are those that orbit the z axis counter-clockwise
(clockwise). For a perfect spherical resonator, the eigenfrequency depends only on nr and l,
therefore an emitter with a fixed transition frequency can only selectively couple to l modes
but not m modes. Whispering gallery modes are further distinguished by their polarization,
denoted as transverse-electric (TE) modes (E(r, ω) · r = 0) or transverse-magnetic (TM) modes
(H(r, ω) · r = 0). For the rest of the paper, we will distinguish these two types of modes using the
labels TEnr ,l,m and TMnr ,l,m.
Orbital angular momentum and spin are distinctly different properties of the fields. While

orbital angular momentum is a global property, photonic spin is a local property related to the
rotational symmetry of the spin-1 electromagnetic vector field [21]. This difference is revealed
by observing how spin-polarized sources interact with the whispering gallery modes locally. As
one might expect, placing the spin-polarized source in the vicinity of spherical resonator should
generate modes with positive OAM. However, as shown in the next section, the exact opposite
happens. Spin-polarized source excites WGMs with an OAM that is anti-parallel to the spin of
source. This can only be explained by the interplay between the spin of the source and the local
spin of the WGMs resulting in the generation of scattered fields that have their OAM anti-parallel
to the spin of the source. This observation shows that the spin-polarized source couples to the
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Fig. 1. Schematic of the proposed experiment to study spin photonics in WGMs. The unique
proposed effect due to the locked electromagnetic triplet consisting of spin, momentum, and
decay. (a) A quantum source with circularly polarized emission (σ± transitions) is placed in
the vicinity of a spherical resonator. The near-field interaction between the source and TM
WGMs of the sphere results in excitation of WGM with only spin polarized, positive OAM
along z direction. This unidirectional behaviour is a manifestation of spin-momentum locking
in a 3D structure. Spin, linear momentum, and decay are along θ̂, φ̂, and r̂, respectively,
and form a triplet for the TE and TM modes. (b) General form of Zeeman transitions in a
cold atom [22] or quantum dot [23]. For σ± and π transitions, ∆mF = ±1 and ∆mF = 0,
respectively, where mF is the quantum number pertinent to the total angular momentum of
the source (nucleous and electrons). These transitions can be modeled by dipole sources
with the electric dipole moment given by Eq. (7) [27].

local spin of the WGMs and not their OAM.
The expression for the local spin density of the electromagnetic field in source-free regions

is given by SSS(rrr, ω) = 1
4ω Im{ε0EEE∗(rrr, ω) × EEE(rrr, ω) + µ0HHH∗(rrr, ω) × HHH(rrr, ω)} [30–33]. From this

expression, we see that a circularly polarized plane wave propagating along the z-direction
in free-space, EEE(r, ω) = E0(x̂ + i ŷ)eikze−iωt , has an electromagnetic spin pointing along the
z-direction. For the rest of the paper, we will drop the arguments (rrr, ω) for notational simplicity.
Using this expression, we can calculate the spatial distribution of the photonic spin density for
whispering gallery modes. Figure 3 shows the field distribution for the TE and TM modes (color
plot) as well as their respective electromagnetic spin (blue arrows) on the surface of the sphere
with radius a. The plots correspond to the TE1,16,16 and TM1,16,16 modes for which λTE = 0.54a
and λTM = 0.52a. In particular, the spin can be written as:

sss = ppp × γγγ (1)

where sss , ppp, and γγγ denote the unit vectors pointing along the spin, the linear momentum, and the
decay directions respectively [16, 17, 34], thereby forming a right-hand rule triplet. Note that ppp
and γγγ are defined as the real and imaginary part of the Poyting vector, respectively [32, 35].

As shown in Fig. 3, the spin of both TE and TM modes (blue arrows) are dominated by the θ̂
component. Explicitly, the dominant electromagnetic spin components STM

lm, θ
and STE

lm, θ
can be

written as:

STM
lm, θ = STE

lm, θ = −m
µ0
2ω

l(l + 1)
|k1 |2a2 g(θ)

[
R

{
k1a j∗l (k1a) jl+1(k1a)

}
− (l + 1)| jl(k1a)|2

]
, (2)

with k1 =
ω
√
εr

c being the propagation constant inside the sphere, εr = 3 is the dielectric
permittivity of the sphere, ω the angular eigenfrequnecy of the TE or TM mode, µ0 the vacuum

                                                                                        Vol. 27, No. 11 | 27 May 2019 | OPTICS EXPRESS 15848 



Excitation

σ-

 Transition 

Fig. 2. Proposed experimental setup for the spin photonics in WGMs. By exciting the
resonator using a σ− transition of a quantum source, WGMs with positive orbital angular
momentum are excited stronger. This can be observed by proximity coupling of a tapered
optical fiber to the spherical resonator. As a result of coupling between the WGMs
with positive OAM and the fiber, modes propagate only in one particular direction in the
fiber [13, 24]. Switching to a σ+ transition instead, would also reverse the propagation
direction inside the fiber. The source can be Zeeman transitions in cold Caesium atom
prepared in the excited state using a excitation signal [22].

permeability, jl(ka) the spherical Bessel function of the first kind and order l, and g(θ) a real
function of θ. R{} takes the real part of its argument. These expressions are derived for fields on
the surface of the sphere. We emphasize that the electromagnetic spin, S, is linearly dependent
on the azimuthal orbital angular momentum, m. This result indicates that the direction of the
electromagnetic spin is locked to the direction of z-projected orbital angular momentum. In other
words, changing the sign of m flips the sign of the spin for both TE and TM modes.

These solutions are found under the assumption that the solutions outside the sphere are
decaying. Changing the outside solutions to growing solutions, instead, changes the sign of the
expression inside the brackets in Eq. (2). This means that under the change of direction in the
decay vector, the spin for both TE and TM modes flips sign. Together with the linear dependence
on m, these observations show the spin-momentum locking property as shown in [16], and also
the fact that spin, momentum, and decay form a triplet. These properties are manifestations of
spin-orbit coupling where the change in the OAM results in a change in the spin of WGMs. These
previously overlooked properties of WGMs have important implications which we will discuss in
the next section. Note that these properties are valid for arbitrary-sized spherical resonators.

3. Near-field spin interaction

We aim to investigate the near-field interaction of Zeeman transitions of a quantum source with
the WGMs of a spherical resonator. For such interactions we focus on the σ± transitions observed
in a cold atom [22] or quantum dots [23]. Solutions of the Green function for a source outside of
a sphere can be written in terms of WGMs with different l and m as [36, 37],

Ge(r, r′) = G0e(r, r′) +Ges(r, r′), (3)
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Fig. 3. Electromagnetic spin in TE and TM whispering galley modes. The color plot shows
the field intensity of Hr (Er ) component of the TE (TM) mode for l = 16 and m = 16 on the
surface of the resonator. The blue arrows show the direction of spin on the surface of the
sphere. Modes with positive m, orbit the z axis counter-clockwise (+φ̂) while those with
negative m orbit the z axis clock-wise (−φ̂). With linear momentum along +φ̂, Momentum,
decay, and spin form a triplet. Spin direction follows the spin-momentum locking property
for both TE and TM modes. This means that by changing the direction of OAM (changing
the sign of m), the direction of the spin (blue arrows) reverses for both TE and TM modes.
This behaviour inspires unidirectional coupling of a circularly polarized dipole to the WGMs.

G0e(r, r′) =
r̂ r̂
k2

0
δ(r − r ′) + ik0

4π

∞∑
l=0

l∑
m=0

Clm


M(1)

lm
(k0)M′lm(k0) + N(1)

lm
(k0)N′lm(k0) r ≥ r ′

Mlm(k0)M
′(1)
lm
(k0) + Nlm(k0)N

′(1)
lm
(k0) r ≤ r ′

,

(4)

G
(11)
es (r, r′) =

ik0
4π

∞∑
l=0

l∑
m=0

Clm

[
BMM(1)

lm
(k0)M

′(1)
lm
(k0) + BNN(1)

lm
(k0)N

′(1)
lm
(k0)

]
, (5)

G
(21)
es (r, r′) =

ik0
4π

∞∑
l=0

l∑
m=0

Clm

[
DMMlm(k1)M

′(1)
lm
(k0) +DNNlm(k1)N

′(1)
lm
(k0)

]
, (6)

where the subscript e indicates that these are the Green’s functions for the electric field, while the
subscripts 0 and s refer to the homogeneous and scattered solutions, respectively. The functions
Mlm and Nlm are the two transverse solutions of Maxwell’s equations [36, 37]. The superscript
(1) in M(1)

lm
and N(1)

lm
refers to the solutions with the spherical Hankel functions of the first kind,

while no superscript implies solutions with spherical Bessel functions of the first kind. Also,
the unprimed and primed solutions show the dependence on the location of the observation
point (r) and the location of the source (r′), respectively. The superscripts (11) and (21) in G

(11)
es

and G
(21)
es indicate the scattered solutions outside and inside the sphere, respectively. Clm’s are

some constants, k0 and k1 propagation constants outside and inside the sphere, respectively, and
BM,BN,DM, and DN are the coefficients found by applying the boundary conditions [36, 37].
Note that these solutions are the summation of the modes with different OAM quantum numbers
l and m. Also, since M and N are the solutions without and with the radial field components [36],
we can consider them as the TE and TM contributions to the WGMs, respectively. We have used
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Fig. 4. Plots of normalized scattered electromagnetic fields due to the right-handed circularly
polarized dipole (σ+ transition). (a) Er , (b) Eφ , and (c) Hθ in the x − y plane. All
components of the fields orbit along −φ direction as a result of the circularly polarized dipole
located at xd = a+10nm and yd = zd = 0 with the dipole moment ddd+ =

d0√
2
(x̂+ i ŷ) = d0êee+.

The circularly polarized dipole couples unidirectionally to the orbit of the fields in the
spherical resonator as a result of spin-momentum locking. One important consequence of
this is that the photonic spin of the source is opposite to the OAM of the WGMs. Additional
videos in supplementary information show the spin-momentum locking (see Visualization 1
and Visualization 2).

these solutions to find the interaction of σ± and π transitions with the dipole moments [27],

ddd± = d0êee± =
d0√
2
(r̂ ± iφ̂), dπdπdπ = d0 x̂ (7)

located outside of a lossless spherical resonator with a relative permittivity of 3 at rd = a+ 10nm,
θd = π/2, and φd = 0. Here, we look at the WGMs with nr = 1 and l = 16 by setting the
wavelength of the source to that of the WGMs for the corresponding nr and l. The radius of
the sphere is therefore chosen to be a = 1177nm to have the resonance of the desired mode at
λ0 = 610nm. The sphere is thus located in the near-field region of the source.
Figure 4 shows the simulation results for the source with the dipole moment ddd+ of a σ+

transition. Photonic spin of the source in Fig. 4 is parallel to the spin of the TE1,16,m>0 and
TM1,16,m>0 modes (Fig. 3). As a result, the dipole excites a mixture of degenerate modes of
positive orbital angular momentum along the z direction (m > 0) and thus gives rise to the
unidirectional orbit of the fields inside the sphere. Although spin of the source is parallel to that
of both TE and TM modes, only TM modes are excited here. This is due to the fact that the spin
of TE mode is primarily from magnetic field while the spin of the TM mode is primarily electric.
Having a purely electric spin, the source therefore only couples to the TM mode. This can be
equivalently explained by the fact that the TE modes do not have a radial electric field component
and therefore they do not couple to the radial component of the dipole moment of the source.
One important observation in Fig. 4 is that the photonic spin of the source (pointing out of

the plane) is anti-parallel to the orbital angular momentum of the scattered modes inside the
sphere (into the plane). This generation of an anti-parallel angular momentum, in the scattered
fields, by using a spin-polarized source can only be explained by the fact that the spin of the
source is parallel to the local spin of the WGMs (Fig. 3) which results in excitation of modes
with anti-parallel OAM. This shows that using a spin-polarized source we can exclusively couple
to the photonic spin of the WGMs [21].
Visualization 1 and Visualization 2 (see online animations) show the clockwise and counter-

clockwise rotation of the scattered fields inside the sphere as a result of the circularly polarized
dipole located outside of the sphere with the dipole moments of d+d+d+ and d−d−d−, respectively. This
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Fig. 5. Normalized Poynting vector along φ direction , Pφ , for the three cases of (a) σ+
transitions (RH circularly polarized dipole), (b) σ− transitions (LH circularly polarized
dipole), and (c) π transitions (linearly polarized dipole along x), in the x − y plane for the
source located at xd = a + 10nm and yd = zd = 0, and with the dipole moments given
by Eq. (7). The negative value of Pφ in (a) and postive value of Pφ in (b) indicate that,
for the RH and LH circularly polarized dipoles as the source, the WGMs of the spherical
resonator orbit clockwise (along −φ̂) and counter-clockwise (along +φ̂), respectively. For
the linearly polarized dipole in (c), however, the WGMs inside the sphere are a mixture of
clockwise and counter-clockwise fields which eventually cancel out each other to give a
net-zero OAM. Therefore, coupling the WGMs to an optical fiber, for instance, on the other
side from the source, would result in an equal wave propagation in both directions inside the
fiber. However, for a circularly polarized source, the modes would only propagate along one
direction inside the fiber, depending on the handedness of source. This figure clearly shows
the unidirectional behaviour of spin interaction of the source and WGMs, as a result of the
spin-momentum locking.

result is an important generalization of spin-momentum locking observed in 1D [3] and 2D [7]
problems. In the 3D problem, however, the linear momentum is a result of the orbital angular
momentum of the fields.
Figure 5 shows the azimuthal Poynting vector, Pφ, inside the sphere, for three cases of right-

handed (RH) circularly polarized (Fig. 5(a)), left-handed (LH) circularly polarized (Fig. 5(b)),
and linearly polarized (Fig. 5(c)) dipoles, with the dipole moments given by Eq. (7). The dipoles
are placed at the same location as that of Fig. 4 (xd ' 1.01a and yd = zd = 0). The unidirectional
azimuthal propagation of WGMs inside the sphere is evident as a result of circularly polarized
dipole. For the RH dipole (Fig. 5(a)) the Poynting vector is along negative φ̂ (shown as purely
red color inside the sphere) meaning that the fields orbit the sphere clockwise, while for the LH
dipole (Fig. 5(b)) the Poynting vector is along positive φ̂ (shown as purely green color inside
the sphere) meaning that the fields orbit the sphere counter-clockwise. Changing the sense of
polarization from RH to LH, changes the sign of azimuthal Poynting vector from negative to
positive as seen in Figs. 5(a) and 5(b). For the linearly polarized dipole in Fig. 5(c), however, the
fields are a mixture of positively and negatively spinning fields (clockwise and counter-clockwise)
which gives a net zero OAM. This result shows that a linearly polarized dipole cannot selectively
couple to positive or negative OAM modes, while a circularly polarized dipole can.

To understand this unidirectional behavior further we look at the energy dissipated in the TM
WGMs written as [38],

WTM
lm =

1
2
R

{
EEETM

lm · ddd
∗
±
}
, (8)

where EEETM
lm

is the electric field of the TM1,lm WGM at the location of the source and d±d±d± is given
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by Eq. (7). The electric TM WGMs fields can be written as [28],

EEETM
lm = Elm,+êee+ + Elm,−êee− + Elm,θ θ̂ (9)

with
Elm,± = −

1
2

√
µ0
ε0

[
l + 1
k0rd

fl(k0rd)(l ± m) ∓ fl+1(k0rd)
]

Ylm(θd, φd) (10a)

Elm,θ = −
√
µ0
ε0

[
l + 1
k0rd

fl(k0rd) − fl+1(k0rd)
]
∂Ylm(θd, φd)

∂θ
(10b)

where fl(k0rd) are the spherical Hankel functions of the first kind evaluated at the location of
the dipole, Ylm(θd, φd) spherical harmonics evaluated at the location of the dipole, k0 free space
propagation constant, rd = a + 10nm , θd = π/2, φd = 0, and êee± are given by Eq. (7). Note that
Elm,+ and Elm,− give spin components along −θ̂ and +θ̂, respectively. We get from Eq. (10),

Elm,+

Elm,−
=

l(l + 1) fl(k0rd) − m [k0rd fl+1(k0rd) − (l + 1) fl(k0rd)]
l(l + 1) fl(k0rd) + m [k0rd fl+1(k0rd) − (l + 1) fl(k0rd)]

. (11)

Note that the terms [k0rd fl+1(k0rd) − (l + 1) fl(k0rd)] and fl(k0rd) are always positive for
rd/a ∼ 1. Therefore we get,

Elm,+

Elm,−
≤ 1, m ≥ 0

Elm,+

Elm,−
> 1, m < 0.

(12)

This means that according to Eq. (8), more energy is dissipated into modes with m < 0 (larger
Elm,+) for ddd = ddd+, while for ddd = ddd−, more energy dissipates in modes with m > 0 (larger Elm,−).
Since modes with larger Elm,+ (Elm,−) have their spin along −θ̂ (+θ̂), we can say that the spin of
m < 0 (m > 0) modes aligns with that of the dipole with ddd = ddd+ (ddd = ddd−). Note that although
Elm,θ and Elm,± have out-of-phase components, they do not contribute any spin component
along r̂ at the location of the source. This means that the photonic spin of the TMWGMs are
completely aligning with that of the source.
Using similar expressions and arguments we can show that the dissipated energy into the TE

WGMs, as a result of the dipole moment in Eq. (7), does not depend on the sign of m because the
radial component of the eletric field of the TE WGM is zero. In other words, the TE mode does
not show any unidirectional behaviour. Although the photonic spin of the TE mode is parallel to
that of the source, the spin of the TE mode is primarily generated by the magnetic field. Since
the spin of the source is completely from the electric field (being an electric dipole), a circularly
polarized magnetic source should be used to couple to the spin of the TE modes.
Although we have only looked at a particular location of the source, we cannot couple the

source to any arbitrary point of the WGMs. This is due to the symmetry of the problem where we
essentially choose the z axis (quantization axis) by placing the source in the vicinity of the sphere.
Because the total angular momentum of the problem should be conserved, the quantization
axis of WGMs (direction of OAM) aligns with the photonic spin of the source. In other words,
changing the orientation of the source would also change the quantization axis of the WGMs.
For the case when the circularly polarized dipole has no radial component (ddd+ = d0√

2
(ŷ + i ẑ) for

instance), no spin-momentum locking related phenomenon is observed, as in this case, the spin
of the dipole (pointed along x̂ direction) is perpendicular to the spin of the TE and TM WGMs.
This unidirectional behavior can be observed by methods such as tapered fiber coupling

(Fig. 2) [26,39] or evanescent coupling [24,40] to the spherical resonator. By coupling the modes
of a tapered optical fiber, for instance, to the WGMs of the sphere, unidirectionally orbiting
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Table 1. Summary of the properties of the WGMs

Whispering Gallery Mode TMlm Mode TElm Mode

Orbital Angular Momentum m > 0 m < 0 m > 0 m < 0

Spin along +θ̂ along −θ̂ along +θ̂ along −θ̂

Spin-Momentum-Decay Triplet Yes Yes

Spin-Momentum Locking Yes Yes

Interaction with σ± Transitions σ− σ+ No Interaction

WGMs of the sphere would couple to the optical fiber modes that propagate only in a particular
direction. Similar methods to those used in [7, 22, 24] for a cylindrical problem can be used to
trap the source at a particular distance from the sphere and to excite it at the same time. This
structure can be an excellent platform to study different forms of spin-spin interaction between
electromagnetic fields, atoms, or electrons. Interaction between sources with non-zero electronic
spin and the photonic WGMs can be used to understand the near-field spin-spin interaction
between the photons and fermions.

4. Conclusion

We have presented the theory of spin-momentum locking in 3D whispering gallery modes
(WGMs). Our results show that the spin-orbit coupling in WGMs results in modes which form
a spin-momentum-decay triplet. This spin-momentum locking property can be observed by
coupling the WGMs to the near-fields of σ transitions in a cold atom or quantum dot. The results
of this paper show that σ+ transitions, for instance, only excite TM WGMs with positive OAM.
Table 1 shows the summary of the results of the paper. These results are observable through
methods such as tapered fiber coupling or evanescent coupling to the WGMs of the sphere. This
structure can be used to study more complex forms of interaction between photonic spin and
electronic spin or the interaction of multiple sources with the WGMs.
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