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Abstract: Inverse design techniques in the context of nanophotonics have helped in discovery
of compact and counter-intuitive structures/shapes. We introduce the concept of spectral
domain inverse design to search through the optical trade-space (dispersive permittivity) of
nanocomposite metamaterials. We develop a hybrid optimization technique that combines genetic
algorithms and gradient descent methods. We utilize this technique to inverse design an ultra-thin
thermophotovoltaic emitter coating material. Our work can lead to an efficient approach to search
for new multi-functional optical/thermal metamaterials with desired complex permittivity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Topology optimization, machine learning, gradient descent, needle optimization and genetic
algorithms have risen to the forefront of nanophotonics due to their ability to inverse design
nanophotonic devices for specific applications [1–19]. Recent important examples include on-chip
wavelength demultiplexer [3], multilayer thin films [4–9], chirped-mirrors [10], nanoparticle
scattering [15], metasurfaces [16,18], core-shell nanoparticles [19] to name a few. The common
theme in these works is the optimization of structural (topology/shape optimization) [3,14] or
configurational (various possible combinations in multilayer thin films) [8,9] parameters for a
given set of available materials to achieve predefined target goals. This motivates the search for
analogous techniques that search through the optical dispersion (dispersive nature of material’s
permitivitty) trade-space to enable discovery of new nanocomposites and metamaterials.

Searching through opticalmaterial dispersion space is challenging. Our aim in this work is to put
forth spectral domain inverse design as an approach to achieve desired optical responses through
nanocomposite materials and metamaterials. The goal is to search for an optimum material
platform with an engineered complex dielectric permittivity that depends on frequency. Thus the
target functionality is achieved by changing the effective dielectric permittivity of nano-composites.
Coupled with existing structural [3,14] (i.e. shape) or configurational optimization [8,9], our
approach can open the route to utilize unique metal-dielectric-semiconductor nanocomposites as
well as unconventional emerging 2D materials to realize desired optical responses.

We perform a proof of principle optimization to show that spectral nanophotonic design can
lead to the discovery of new metamaterials in an efficient manner. Conventional plasmonic thin
films of gold, silver, etc. form the starting point for nano-structuring into metamaterials. To
discover alternative optimal nanocomposite thin films with desired broadband spectral properties,
we utilize effective medium theory in the inverse design algorithm. In our technique, we make
use of genetic algorithms and gradient descent techniques in an alternating optimization scheme-
thus we call it "Hybrid Optimization". We show that conventional multi-layer thin films can be
replaced by an optimized metamaterial nanocomposite Fig. 1. This hybrid optimization method
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is used to find an optimal single layer disordered metamaterial for thermalphotovoltaic (TPV)
emitter coating applications.

Fig. 1. Basic Idea: The spectral features of a N layered multilayer thermal emitter (TPV
emitter) stack are mimicked by a single disordered nanocomposite metamaterial. Using
a hybrid optimization technique we find the effective permittivity of this nanocomposite
material that as the same reflection and transmission spectral features as the one shown.

2. Hybrid Optimization

To start with, here we outline how the hybrid optimization is implemented. First, we specify the
desired reflection, transmission and absorption spectra (total of three spectra). In our approach,
unlike other implementations [8,9], our optimization is highly constrained as we simultaneously
optimize on reflection R∗(λ), and transmission T∗(λ) target spectra. The spectral response of the
nanocomposite metamaterial is computed via transfer matrix method. Effective Medium Theory
(EMT) [20–23] is used to compute the effective permittivity of the nanocomposite metamaterial,
as shown in Eq. 1.

εeff = εmat −

3ρεh
2x3

[ ∑N
l=1 i(2l + 1)(al + bl)

]
1 + ρεh

2x3

[ ∑N
l=1 i(2l + 1)(al + bl)

] , (1)

where, x = 2πrnh/λ is the size parameter (r is the radius, εh(nh) is permitivitty (refractive index)
of host medium and λ is the wavelength of light), εmat corresponds to the permittivity of the
inclusion material (nanoparticle’s material), l is the order of the poles, al and bl are the Mie
coefficients that are expressed in terms of Ricatti-Bessel functions. The size parameter sets the
cut-off for the number of terms to be considered. It is defined as, N = [x+ 4.05x 1

3 + 2], where the
square brackets mean rounding it to the nearest integer. This enables the equation Eq. 1 above
to handle effects arising due to finite size spherical particle inclusions. This effective medium
theory provides the additional degree of freedom in material permitivitty. Here, we use this idea
to find an equivalent single layer nanocomposite metamaterial.
To find the optimum nanocomposite structure, we try to minimize the residuals between the

specified target spectra as described by the merit function MF(d, r, ρ, n1, n2). The merit function
is defined as Eq. (2), where d is the thickness of the single layer, r is the radius of the nanoparticle
inclusions, ρ is the fill fraction, n1 and n2 are the material indices corresponding to a discrete
material set. We have used a discrete material set to account for practical limitations. In this
specific problem we have used a total of 22 materials.

MF =
∑
λ

√[(
R(λ) − R∗(λ)

)2
+

(
T(λ) − T∗(λ)

)2
+

(
A(λ) − A∗(λ)

)2] , (2)

where A∗(λ) is 1 − R∗(λ) − T∗(λ). As we are interested in optimizing over a broad wavelength
range, we consider the material dispersion for accurate results. Given the desired target spectra,



Research Article Vol. 9, No. 12 / 1 December 2019 / Optical Materials Express 4767

R∗(λ) and T∗(λ), the optimization problem is formulated as a mixed integer problem,

[d∗, r∗, ρ∗, n1∗, n2∗] = arg minMF(d, r, ρ, n1, n2), (3)

where, d, d∗, r, r∗, ρ, ρ∗ ∈ IR+ and n1, n1∗, n2, n2∗ ∈ IN.
Having defined the optimization problem in Eq. (2.), we now describe the hybrid optimization

approach that we have implemented. One can classify this optimization as a non-convex
optimization problem. The merit function space is very complex and simultaneous optimization
of all the parameters did not yield a satisfactory solution (the optimization often converged to
a shallow local minimum). As part of the problem considered here has discrete variables, the
problem falls in a class of combinatorial optimization. Many problems in this class are NP-hard
and efficient optimal algorithms are infeasible unless P=NP [24]. NP-hard are class of problems
which are at least as hard as the hardest problems in NP where NP is defined as a class of
computational problems where given an answer, one can verify the solution in polynomial time
by a deterministic Turing machine.
Considering the complexity of the problem, we have utilized hybrid optimization approach

wherein we use a coordinate descent method. A schematic describing the basic algorithmic idea
is shown in Fig. 2. In this method, we optimize one parameter keeping the rest of the parameters
fixed. Once the favourable solution for the first parameter is optimized, the next (second)
parameter is now optimized using the value of the first optimal parameter as the new initial guess
value for the second parameter’s optimization run. This process is iteratively repeated across
all the parameters until the desired convergence criteria is satisfied. Since each sub-problem of
optimizing one parameter at a time converges (decreasing) and the overall problem is bounded
from below, the hybrid algorithm converges to a stationary solution [25,26].

The hybrid approach can primarily be broken down into the following steps: (A) Initialization,
(B) Optimal gradient descent, and (C) A discrete optimization. Considering the non-convex nature
of the merit function space, it is very important to have an intelligent guess of the initialization
parameters. These initialization parameters are chosen by evaluating the merit function value
for 10000 sets of five independently generated random numbers. The five random numbers
correspond to the thickness (d), fill fraction (ρ), radius (r), host material (n1) and inclusion
material (n2). The merit function is evaluated for all these 10000 random sets of values for
(d, r, ρ, n1, n2). Amongst these, 10 sets having lowest value of the merit function are chosen as
the "starting points" (starting guess values) for the hybrid optimization. The hybrid optimization
is performed over these 10 sets of initial guess values and the best converged value over these
10 sets is chosen as the output of the algorithm. Using these multiple starting points helps in
achieving a better optima. Optimal gradient descent optimization is used for optimizing thickness
(d), fill fraction (ρ) and radius (r). Active-set constrained optimization algorithm technique [27]
is used to find the optimal solution. The constraints are based on realistic assumptions set by
physical limitations.
Discrete optimization is performed using a Genetic Algorithm (GA) [28,29]. Genetic

Algorithms are a meta-heuristic optimization routine based on the ideas of natural selection
(evolution). Here we utilize this algorithm to search through the material database (22 materials)
that make up the nano-composite disordered metamaterial i.e. host material (n1) and inclusion
material (n2). The permittivity, ε(λ) of each material in the material database is assigned a
discrete identification number (unique). The Genetic Algorithm algorithm is utilized to search
over these discrete identification numbers to find an optimal material for the host and nanoparticle
inclusions. While searching, the corresponding dispersion, ε(λ) is used to evaluate Eq. (2.) and
thus the reflection and transmission spectrum using transfer matrix method. This optimization
algorithm is implemented for broad wavelength ranges. The typical run times for the algorithm to
reach a reasonable solution is less than ∼6 hours. This is very promising considering the highly
constrained nature of the optimization problem.
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Fig. 2. Hybrid Optimization: The flowchart shows the algorithm used to obtain the
optimal solution. Gradient descent technique was used for optimizing d, ρ, r, and a discrete
search (Genetic algorithm) was used for searching over the material database.

3. Epsilon-near-zero TPV emitter coating

A thermalphotovoltaic (TPV) system consists of a thermal emitter coating, and a photoconverter
(photovolataic (PV) cell). Selective thermal absorption and emission by the thermal emitter
coating can vastly improve the energy conversion efficiency of TPV system. This can be achieved
by suppressing the emission of thermal photons below the PV cell bandgap and enhancing it
above the cell bandgap [30–32].

The hybrid optimization algorithm is used on realistic target spectra. Reflection and transmission
spectral features of a 5 layered multilayer stack consisting of arbitrary materials and thickness
serves as realistic target spectra. The target spectra are shown in Fig. 3 in black. The above
introduced hybrid optimization approach is utilized to find the optimal parameters of the single
disordered metamaterial layer. Fig. 3 shows the optimal solution obtained utilizing this algorithm.
The equivalent single layer solution consists of TiN host and HfO2 particle inclusions.

The effective thickness of this single layer is ∼ 97nm and host particles have a radius of
∼ 34.73nm. We note here that this approach is not limited to the infrared spectral region but
can also be utilized in the visible wavelegnth range. The effective layer’s permitivity is shown
in Fig. 4(a). The versatility of the proposed hybrid optimization is attributed to the ability of
tuning the material dispersion properties of the disordered nanocomposite material over a range
of wavelengths. The spectral position of epsilon near zero (ENZ) of the nanocomposite layer can
be tuned by varying the fill fraction (ρ) of the inclusions. This is illustrated in Fig. 4(b).
We perform abinitio FDTD simulations (Lumerical FDTD solutions) to find the reflection

and transmission spectra of the actual disordered metamaterial. A spatial resolution of 1 nm
and plane-wave source was used as an excitation source. We found no dependence on the

Fig. 3. Optimal solution: The figure shows the target spectra and the obtained spectra of
single layer disordered metamaterial found using the hybrid optimization technique. The host
medium was found to be TiN with HfO2 particle inclusions having a radius of ∼ 34.73nm
and a fill fraction ρ ∼ 0.84. Subplots (a), (b) and (c), show the reflection, transmission and
absorption spectra respectively.
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polarization of incident light on the transmission and reflection spectra. Fig. 5 shows the obtained
transmission and reflection spectra. There is a qualitative agreement between EMT and FDTD.
Low transmission in FDTD results compared to EMT is attributed to the fact that in EMT we
assume a uniform, clear medium which is not the case with finite size inclusions. Furthermore,
as the higher fill fraction values are not practically possible to achieve (without the spherical
inclusions merging into each other), there is an upper bound on the practically achievable fill
fraction. This leads to the spectral mismatch between EMT and FDTD results. However, there is
a qualitative agreement between the two.

Fig. 4. Effective single layer permitivitty and tunning ENZ: The subplot (a) shows the
effective permitivitty, ε = ε ′ + ιε” of the single disordered nanocoposite layer. The subplot
(b) shows real part of permitivitty ε ′ calculated for various fill fractions, ρ. The inset figure
shows the red shift in the ENZ position with increasing fill fraction, ρ = 0 and ρ = 1 show
the bounds within which the ENZ can be varied.

Fig. 5. FDTD simulations The subplot (a) shows the transmission spectrum obtained using
FDTD simulations. The subplot (b) shows the reflection spectrum obtained using FDTD
simulations. This shows qualitative agreement with the EMT.

4. Conclusions

We have introduced the concept of spectral domain inverse design. This is complementary to
existing techniques of structural optimization since we search for a complex dielectric permittivity.
We have shown an approach to engineer new metamaterials that can be utilized in inverse design
problems. Using this approach we have found a new disordered metamaterial that can be utilized
as a TPV thermal emitter. Our work can lead to a new approach for metamaterials discovery.
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