Soil organic matter recycling

Virginie Baldy
Aix-Marseille University
Mediterranean Institute of Biodiversity and
Ecology

Soil quality

Soil quality is defined as the continued capacity of soil to function as a vital living system:

- sustain biological productivity
- promote the quality of air and water environments
- maintain plant, animal and human health

(Doran and Safley, 1997)

5 functions of soil

Habitat for soil organisms

soil fractions

Organic horizons = Humus

Poor in organic matter

Mineral horizon

Dead leaves (4 t/ha/year) constitute leaf litter

Non-fragmented leaves (horizon OL)

Fragmented leaves by faunal activity (horizon OF)

faunal faeces (horizon OH)

_Organo-mineral or mineral soil

 Superficial organic horizons, especially litter, represent the most active compartment from a food web and flow of energy points of view

 From efficiency of leaf litter decomposition depends soil quality and fertility

Leaf litter = the main ressource of nutrients for many soil organisms in interaction

fragmentation and mixing of soil organic matter

Chemical and physical modifications

Humification and mineralization

Leaf litter decomposition Mainly a biological process

Fig. 2.1 Classification of soil biota on the basis of their body size. (Adapted from Swift et al. 1979).

I. Concerning fauna....

divided in 3 groups depending on the size of the organisms:

Microfauna (nematods and protozoa, size<0.2mm)

Mesofauna (enchytreids, microarthropods, size=0.2-4mm)

Macrofauna (earthworms and diplopods, size> 4mm)

They colonize all organic horizons and play a key role in the organic matter transformation

1. Enchytreids (small and white worms 1-5 mm)

Feed on soft parts of dead leaves

They live in OL, OF and their fecal pellets constitue OH

2. Earthworms

Big ones (>5cm) (Lumbricidae)

One ha of soil = 2 tons of earthworms!

They are anecic (move from a horizon to another)

Worms castings

Phosphorus x 16

Nitrogen+ 30

Compared to soil

Smaller earthworms (0.5-5 cm) « epigeous » (they live in horizons OF and OH)

Mean size earthworms endogenous

Stay in the 10 first cm of mineral soil where they feed

3. Collembola (microarthropods without wing)

Collembola can be eat by a predator: pseudoscorpio

1 m² of forest soil: more than 200000 collembola

4. Acaria (micro arthropods without wing)

1 m² of forest soil: more than 250000 acaria

Collembola and acaria decompose leaf litter in horizons OL and OF and accumulate fecal pellets in OH

Action of fauna on leaves

II. Concerning microorganisms....

High species and function diversity

Key role in leaf litter decomposition

Able to mineralize all organic matter

(C, N, P, cations,...)

Different leaf litter decomposition stages by fungi

Leaf litter decomposition is controlled by two types of factors

Leaf litter decomposition Relative importance of factors

Experimental approach « Litter bags » in situ experiment

Leaf litter mass loss and chemical transformations

Biomass, functionnal and specific diversity, activity of decomposers 28

Methods

Mesofauna and fungal biomass associated to decomposed leaves

✓ Berlese funnel: mesofauna extraction

Identification and counting of organisms belonging

to mesofauna

✓ Ergosterol: fungal biomass indicator

Extraction, purification and quantification by HPLC

Methods Microbial catabolic profiles associated to decomposed leaves

✓ Biolog ecoplate®: microbial catabolic diversity (indicator of microbial functional diversity)

Optical density is proportional to the capacity of microorganisms to degrade each substrate

Methods

Microbial diversity associated to decomposed leaves (metabarcoding)

OTU abundance matrix OTU Taxonomy matrix

Methods Secondary metabolites litter content

✓ Terpenoids extraction:

Measurement by Gaz Chromatography coupled Mass

Spectrometry

✓ Phenolics extraction:

Measurement by Gaz Chromatography coupled Mass Spectometry

✓ Phenolic Index: total amount of phenolics in equivalent of gallic acid

Colorimetric measurement in spectrometry