

Jihočeská univerzita v Českých Budějovicích University of South Bohemia in České Budějovice

Outline

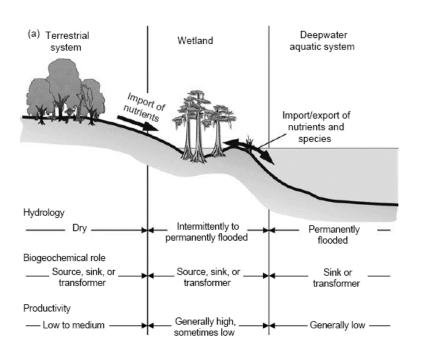
- 1. Introduction to wetland ecology
- 2. Carbon cycling in wetlands
- 3. Wetlands as a source of methane
- 4. Wetlands and climate

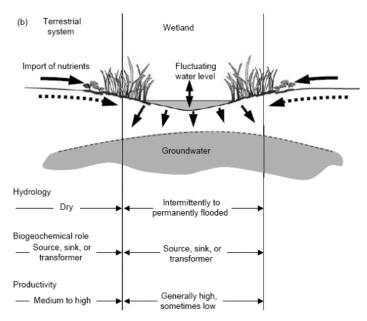
https://blogs.reading.ac.uk/cwac/2015/01/16/phd-research-abroad-birds-in-rice-fields-of-the-philippines

http://www.korenova-cisticka.cz/o-korenovkach/financovani/Korenova-cisticka%E2%80%93korenova-cistirna%E2%80%93naklady.html

Attributes of wetlands:

- 1. permanently or seasonally waterlogged or flooded
- 2. hydrotropic vegetation
- 3. substrate saturated with water

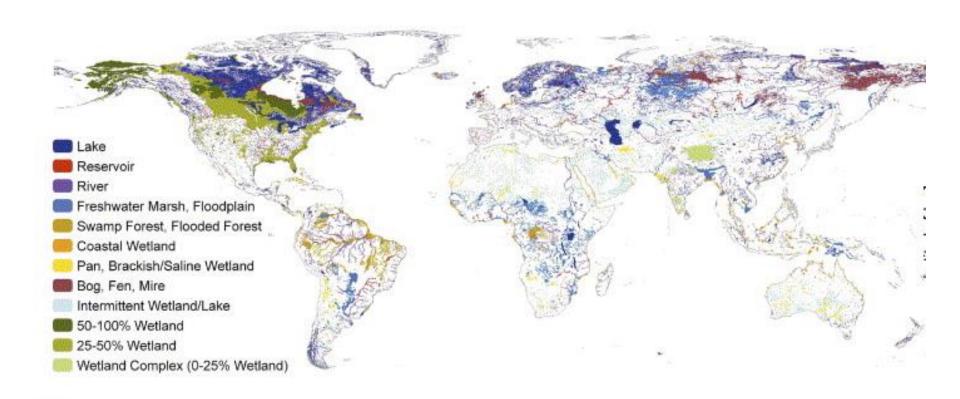

Ramsar Convention definition:


"...wetlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres."

Hydrology

the most important driver of wetland functioning

- source of water (salt, freshwater; oligotrophic eutrophic)
- water regime (period of flooding)
- water quality, oxygen concentration....



SURE 3.1 (a) Wetlands shown as a continuum between terrestrial and deepwater aquatic systems.
Wetlands can exist as isolated from other water bodies. (From Mitsch and Gosselink, 2000. With mission.)

Wetlands as a continuum between terrestrial and aquatic systems – fluxes of energy and materials

Distribution of wetlands

6% of the Earth surface

What is the use of wetlands?

the most biologically productive and biologically diverse ecosystem

Table 1.7 Net primary production of vegetation in different ecosystems (Compiled from Houghton & Skole, 1990; Schlesinger, 1997; Larcher, 2003)

Ecosystems	NPP (Mg ha ⁻¹ year ⁻¹) (range)	NPP (Mg ha ⁻¹ year ⁻¹) (mean)	Phytomass (Mg C ha ⁻¹) (mean)	Carbon in vegetation (Pg C)	Area (million square kilometres)
Rock and ice	0-0.1	0.03	-	=	15.2
Tundra (mean of different types)	0.1–4	1.4	8	9.0	11.0
Boreal forests	2.0 - 15	8	95	143.0	15.0
Temperate forests	4-25	12	80	73.3	9.2
Temperate grassland (mean of different types)	2–15	6	30	43.8	15.1
Tropical rain forests	10-35	22	150	156.0	10.4
Tropical dry forests	16–25	18	65	49.7	7.7
(Sub)tropical wood-land and savanna	2–25	9	20	48.8	24.6
Deserts and semideserts	0.1–3	0.9	3	5.9	18.2
Cropland	1-40	6.5	14	21.5	15.9
Wetlands	10-60	30	27	7.8	2.9
Inland waters	1-15	4			2.0
Total				558.8	147.2

Ecological functions of wetlands

- the most biologically productive and biologically diverse ecosystem
- effect on water quality (living filters)
- element cycling (accumulation, transformation and transport)
- effect on climate (local and global)
- flood control
- shoreline stability
- host many species of plants and animals

Wetland use by human

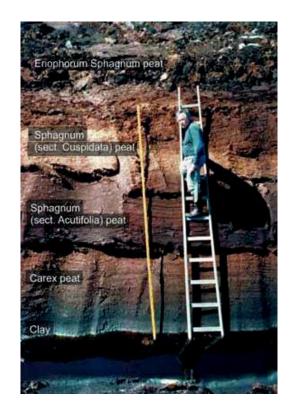
- agriculture (rice paddies, floodplains)
- fishing
- hunting (waterfowls)
- water use for drinking or irrigation
- source of peat (burning, horticulture)
- wood (timber) and biomass production
- water purification (constructed wetlands)
- recreation

©M. Dworschak, Gd NRW, https://www.dbges.de/en/working-groups/soil-systematics

http://www.ser.gwdg.de/~kuzyakov/soils/WRB-2006_Keys.htm

Mineral wetland soils

- part or the whole soil profile is saturated for a sufficient period of time to create distinctive gley horizons
- sandy, loamy, or clay
- Increase in organic matter accumulation in surface horizon
- Mottled zone (gley horizon) where iron and manganese accumulate
- Permanently reduced zone (gray color or bluish-green color)

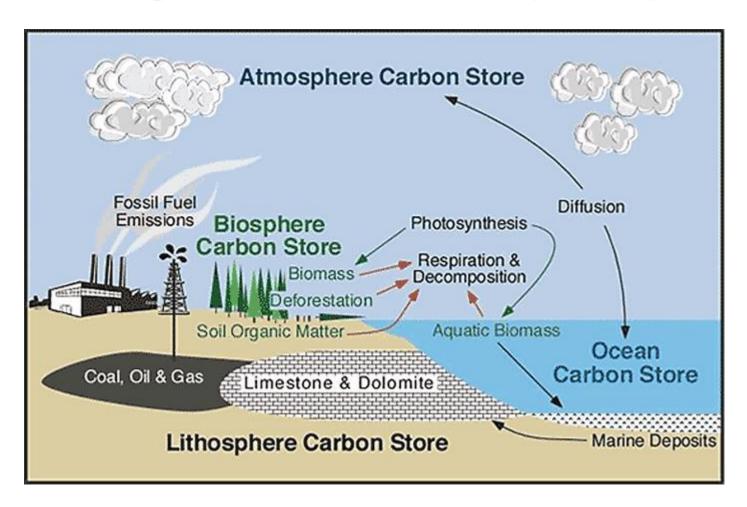

http://broome.soil.ncsu.edu/student_projects_2014/fall_2003/whiteoakcreek/gley.html

©M. Dworschak, Gd NRW, https://www.dbges.de/en/working-groups/soil-systematics

Organic wetland soils (Histosols)

- contain more than 12 % of total C in the upper 1 m layer
- peat (peatlands)

Outline

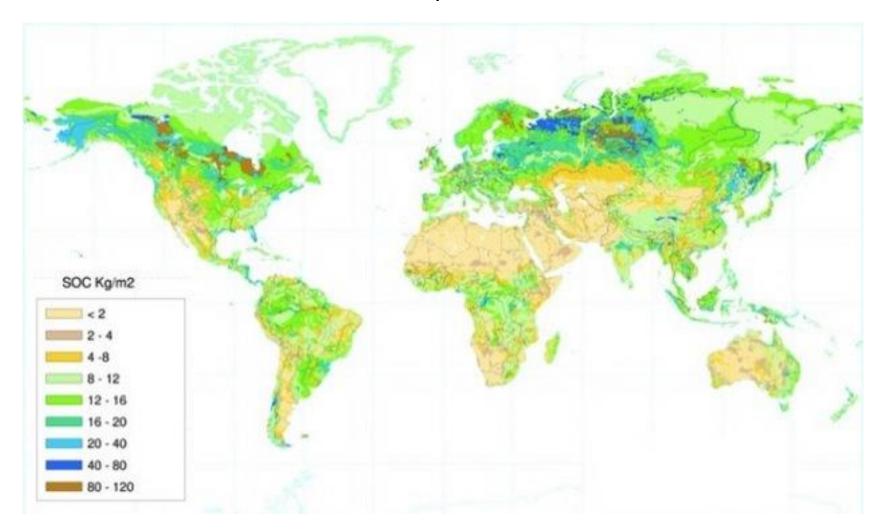

- 1. Introduction to wetland ecology
- 2. Carbon cycling in wetlands
- 3. Wetlands as a source of methane
- 4. Wetlands and climate

Carbon in wetlands

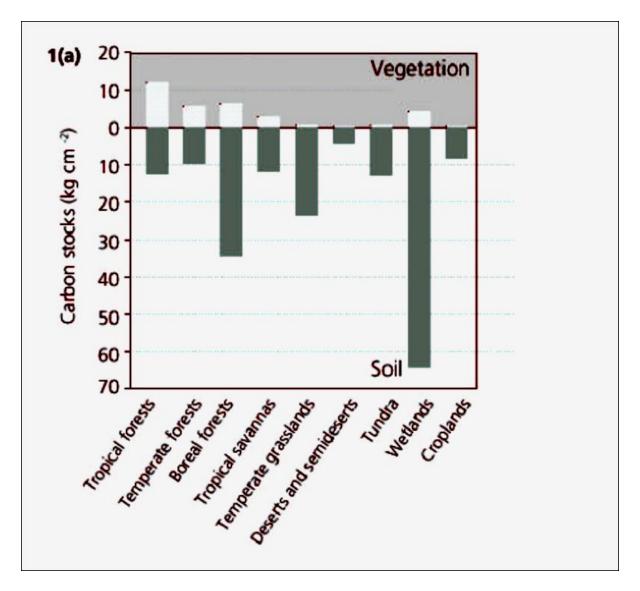
- C basic element of life forms

- Photosynthesis x respiration
- $6CO_2 + 6H_2O = C_6H_{12}O_6 + 6O_2$ (Photosynthesis)
- $C_6H_{12}O_6 + 6O_2 = 6CO_2 + 6H_2O$ (Respiration [Aerobic])

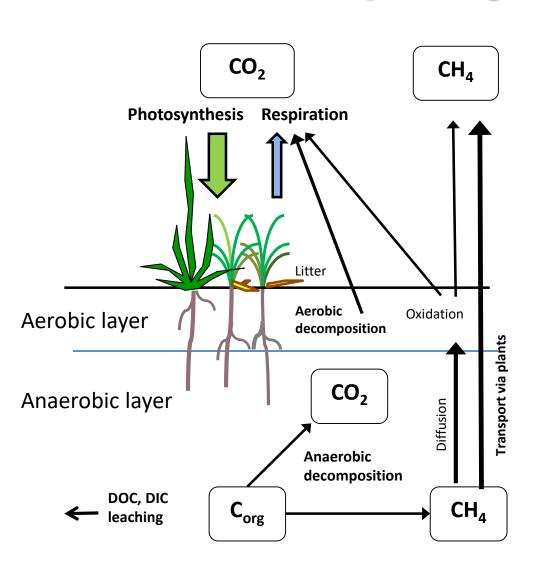
Carbon in wetlands



Major reservoirs of C


Reservoir of C		Total C amount (Pg)		
Atmosphere	CO2 - 732	735		
	CH4 - 3			
	CO - 0,2			
Hydrosphere		38 000		
Sediments		>10 000 000		
Fossil fuels		5000 / 10 000		
Biosphere		600		
Soils	Wetland soils 450-	2100-2500		
	700			
Peatlands	250 – 400 Pg			
It is equals 30-50% of C in the atmosphere				
They cover only 3% of the Earth surface				

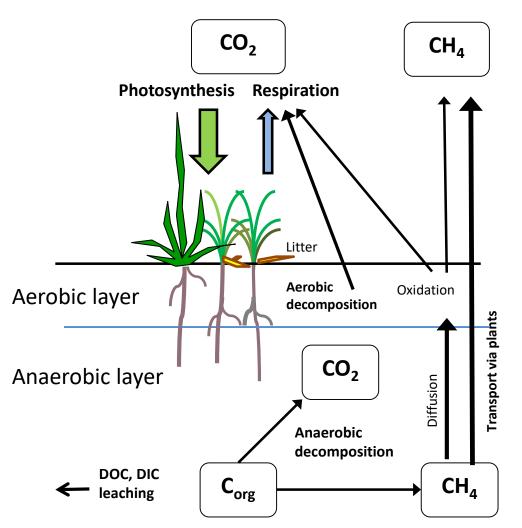
 $Pg - 10^{15}g$


World map showing the quantity of soil organic carbon (SOC) to 1 m depth.

Wetland carbon storage potential compared to other ecosystems

Carbon cycling in wetlands

Carbon income


photosynthesis

Carbon losses

- autotrophic respiration
- heterotrophic respiration
- leaching

Carbon accumulates when income exceeds carbon losses

Carbon cycling in wetlands

NET PRIMARY PRODUCTION

 $NPP = GPP - R_{plant} [g m^{-2} year^{-1}]$

GPP ... Gross primary production (Photosynthesis)

R_{plant} ... Plant respiration

NET ECOSYSTEM EXCHANGE

NEE = GPP - Re [g m⁻² year⁻¹]

GPP ... gross primary productivity (photosynthesis)

Re ... ecosystem respiration (respiration of plants, animals, and soil microbes)

NET ECOSYSTEM PRODUCTIVITY

NEP = GPP - Re +/- $F_{lateral}$ [g m⁻² year⁻¹]

F_{lateral} lateral fluxes of carbon into and out of ecosystem

Wetlands as a C sinks

- C accumulates in wetlands because of slower decomposition (NPP > Re)
- decomposition rate controlled by:
 hydrological regime
 content of O₂
 temperature
 quality and quantity of org. material (plant species)
 microbial activity
 pH, nutrient content, water quality, ...
- Carbon accumulation varies between wetland types and in time

Wetland organic soil - peat

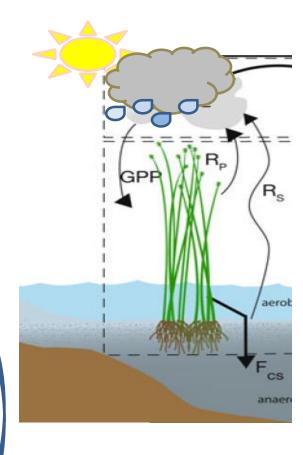
Upland soil - cambisol

Carbon accumulation rate

Long-Term Accumulation of Organic Matter in Selected Wetlands

Wetland	Locations	Carbon Accumulation (gm ⁻² year ⁻¹)	Reference
Peatland	Alaska	22-122	Billings (1987)
Everglades	Florida		
Typha sp.		163-387	Reddy et al. (1993)
Cladium sp.		86-140	
Salt marsh	Louisiana	200-300	Hatton et al. (1983)
Coastal marsh		50-500	Rabenhorst (1995)
Sphagnum	Wisconsin	34–75	Krazt and Dewitt (1986)
Taxodium	Georgia	45	Cohen (1974)
Bogs	Sweden	20-30	Armentano and Menges (1986)
Mangroves	Mexico	100	Twilley (1992)

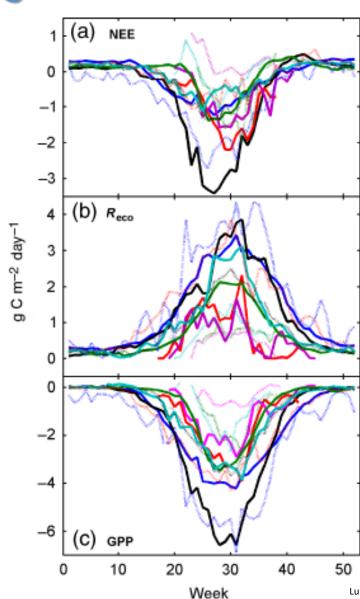
Variability of Carbon fluxes


Both photosynthesis (GPP)and ecosystem respiration (Re) are controlled by many factors, which are changing in time:

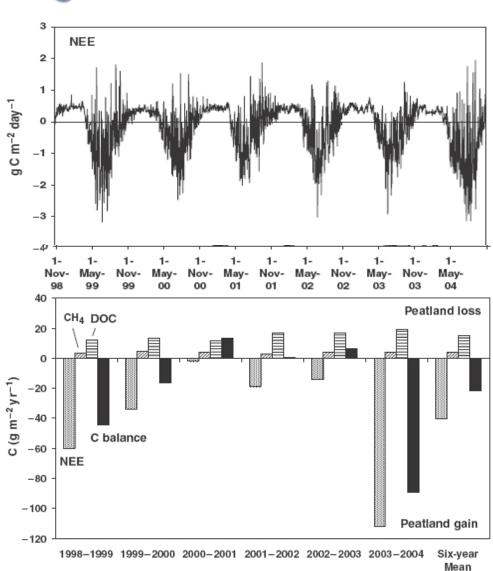
• Climate (radiation, temperature, precipitation)

Plant species composition

 (quality and quantity of org. matter, VGA, root exudates, ...)


Hydrology

Interactions

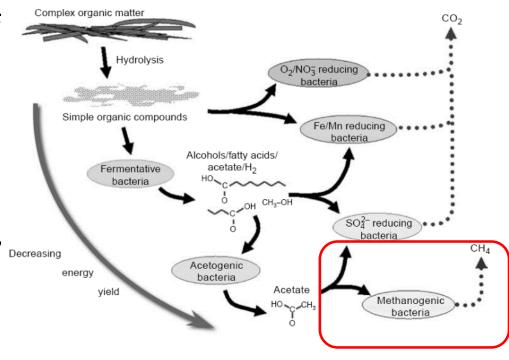

Variability of Carbon fluxes

 Carbon fluxes during year

Variability of Carbon fluxes

 Carbon fluxes vary between years

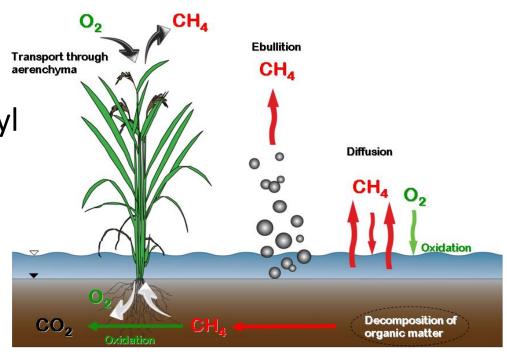
Outline


- 1. Introduction to wetland ecology
- 2. Carbon cycling in wetlands
- 3. Wetlands as a source of methane
- 4. Wetlands and climate

- Wetlands are one of the largest natural source of CH₄ to the atmosphere
- CH₄ 25 times stronger global warming potential than CO₂
- Wetlands have dual impact on climate:

sink of CO₂ x source of CH₄

Methane – end product of anaerobic decomposition under the most reduced condition, when other electron acceptors are depleted $(O_2, NO_3^-, Fe, Mn, SO_4^{2-})$

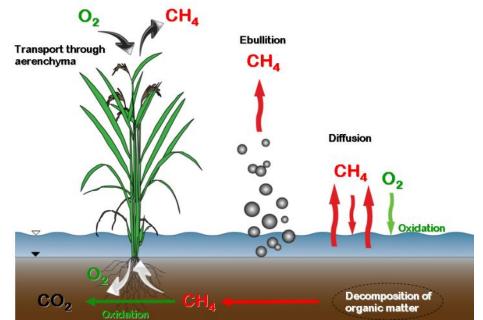


 CH₄ produced by methanogenic Archaea

Substrate utilization:
 acetate, CO₂ + H₂, methyl
 compounds

 Transport to the atmopshere: via plants (aerenchym), diffusion, ebullition

 Methane oxidation – aerobic methanotrophic bacteria

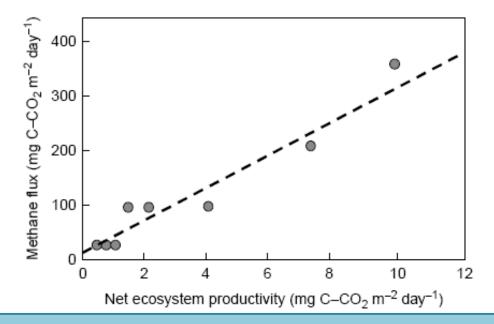


Methane oxidation: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Methanogenesis:

Hydrogenotrophic: $CO_2 + 4H_2 \rightarrow 2 H_2O + CH_4$ Acetotrophic: $CH_3COOH \rightarrow CO_2 + CH_4$

Factors influencing CH₄ production and emissions:

- Hydrology (aerobic/anaerobic conditions)
- Trophic status (nutrients, pH, substrate availability, ..)
- Plant species composition (aerenchym, quality of org. matter, exudates, ..)
- Temperature

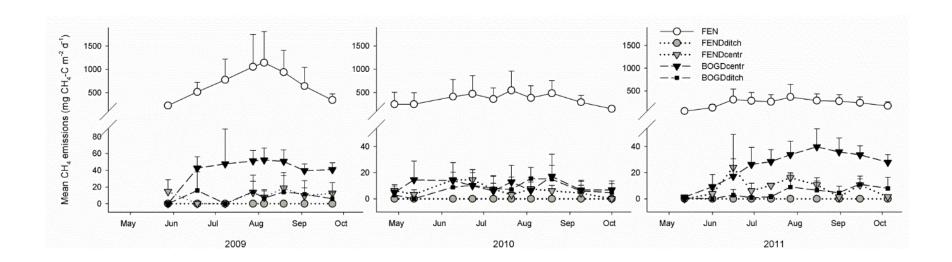

Factors influencing CH₄ production and emissions:

- Hydrology (aerobic/anaerobic conditions)
- Trophic status (nutrients, pH, substrate availability, ..)
- Plant species composition (aerenchym, quality of org. matter, exudates, ..)
- Temperature

Factors influencing CH₄ production and emissions:

Relationship between net ecosystem productivity and net methane flux

3% of net ecosystem production (C fixation) released back to the atmosphere as CH₄


Methane emissions

Methane emissions (as C) from different wetlands

Wetland type	g- C m ⁻² year ⁻¹	Reference
Northern Peatlands		
Canadian peatlands	<7.5	Moore and Roulet (1995)
Temperate/Tropical Wetlands		
Amazon basin, Brazil	40-215	Devol et al. (1988)
Australian billabong	12-22	Sorrell and Boon (1992)
Louisiana freshwater marshes	3–225	Delaune and Pezeshki (2003)
Louisiana bottomland hardwood forest	10	Yu et al. (2008)
Amazon Basin	30	Melack et al. (2004)
Spring-fed wetlands, Mississippi	51	Koh et al. (2009)
Freshwater marsh, Virginia	62	Whiting and Chanton (2001)
Temperate forested wetlands	35	Bartlett and Harriss (1993)
Orinoco floodplain, Veneuzela	9	Smith et al. (2000)
This study		
Temperate flow-through wetlands, Ohio	57 ± 18	Nahlik and Mitsch (2010)
Created temperate marshes, Ohio	30 ± 14	Nahlik and Mitsch (2010)
Tropical flow-through wetland, Costa Rica	33 ± 5	Nahlik and Mitsch (2011)
Tropical floodplain wetland, Costa Rica	263 ± 64	Nahlik and Mitsch (2011)
Tropical rain forest isolated wetland, Costa Rica	220 ± 64	Nahlik and Mitsch (2011)
Tropical seasonally flooded wetland, Botswana	72 ± 8	This study

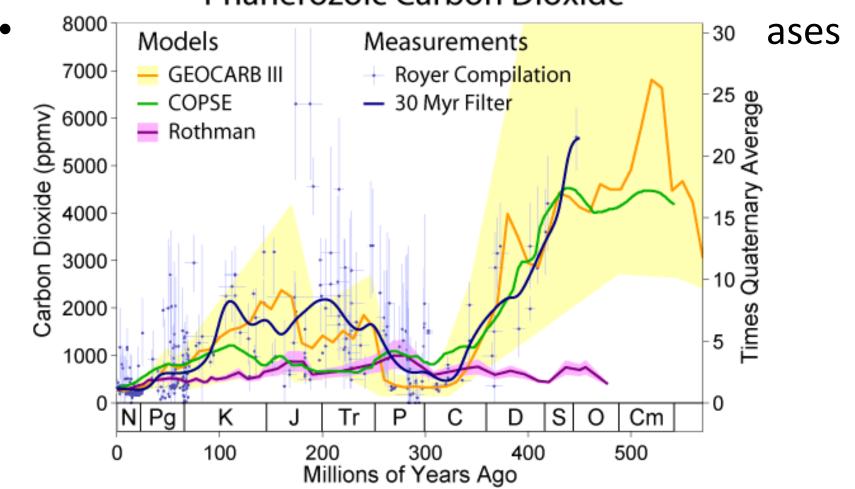
Methane emissions

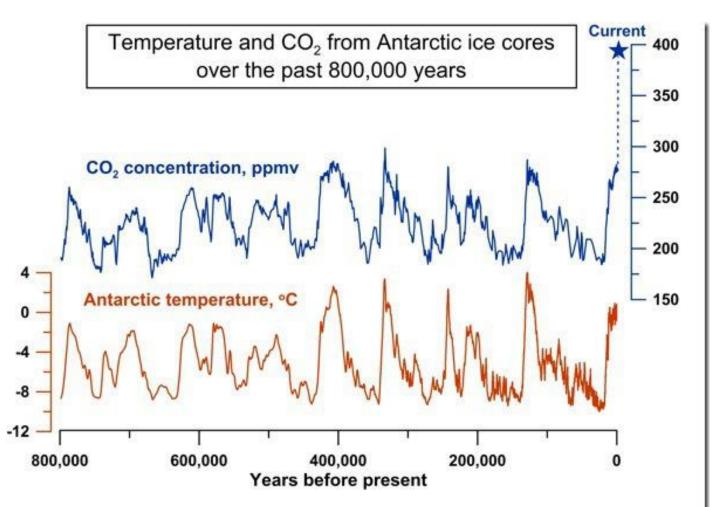
 High seasonal and interseasonal variability of CH₄ emissions

Outline

- 1. Introduction to wetland ecology
- 2. Carbon cycling in wetlands
- 3. Wetlands as a source of methane
- 4. Wetlands and climate

Feedback mechanism

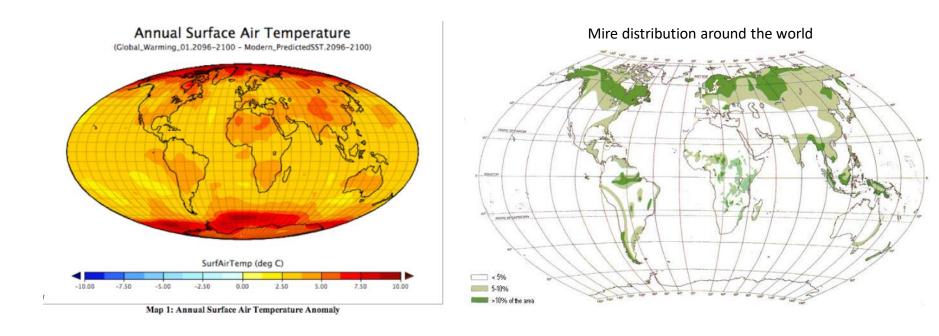

- Long term storage of CO₂ x source of CH₄
- CO₂ sequestration 830 Tg/year of C = cooling effect
- Methane emissions 400 Tg C year⁻¹ = warming effect


 Global warming potential (GWP) – a measure of the relative effect of a given substance compared to CO₂ for a chosen time horizon

Time horizon	20	100	500
CO ₂	1	1	1
CH ₄	72	25	7
N ₂ O	289	298	156

- CH₄ more effective thermal absorption
 - 200% increase of CH_4 concentration over the last 200 years (0,7 1,8 ppm)

Phanerozoic Carbon Dioxide


The 800,000-year record of atmospheric CO₂ from the EPICA Dome C and Vostok ice cores, and a reconstruction of local Antarctic temperature based on deuterium/hydrogen ratios in the ice. The current CO₂ concentration of 392 ppmv is shown by the blue star. (data from Lüthi et al., 2008, Nature, 453, 379-382, and Jouzel et al., 2007, Science, 317, 793-797).

What will be the impact of climate change to wetlands?

Sea level rise - coastal wetlands

Higher temperatures - increase in photosynthesis, respiration, biomass production, decomposition, methane emissions, changes in plant species composition,..

Changes in precipitation – hydrology, plant species composition, biogeochemical processes,..

- Climate change is projected to be the most severe at the high latitudes where most peatlands are situated
- Permafrost melting in tundra