Partitioned Low Rank Compression of Absorbing Boundary Conditions for the Helmholtz equation

Rosalie Bélanger-Rioux, Harvard University

Laurent Demanet, Massachusetts Institute of Technology Imaging and Computing Group

> CSE 15 March 15, 2015

Helmholtz equation in unbounded domain

2D Helmholtz equation

$$\Delta u(\mathbf{x}) + \frac{\omega^2}{c^2(\mathbf{x})} u(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2.$$

Solution u, frequency ω , medium $c(\mathbf{x})$, source $f(\mathbf{x})$.

Many sources!

Select outgoing waves using the Sommerfeld Radiation Condition

$$\lim_{r \to \infty} r^{1/2} \left(\frac{\partial u}{\partial r} - iku \right) = 0, \qquad k = \frac{\omega}{c},$$

where r is the radial coordinate.

2 / 31

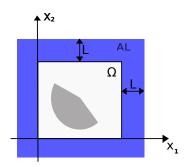
Applications

- Wave-based imaging, an inverse problem.
 - Seismic imaging: for rock formations.
 - ▶ Ultrasonic testing: non-destructive testing of objects for defects.
 - ▶ Ultrasonic imaging: visualizing a fetus, muscle, tendon or organ.
 - ▶ Synthetic-aperture radar imaging: visualizing a scene or detecting the presence of an object far away or through clouds, foliage.
- Photonics: studying the optical properties of crystals.
- Speeding up Domain Decomposition Methods.

Absorbing Boundary Conditions (ABCs) and Layers (ALs)

$$\Delta u(\mathbf{x}) + \frac{\omega^2}{c^2(\mathbf{x})} u(\mathbf{x}) = f(\mathbf{x}), \qquad k = \frac{\omega}{c(\mathbf{x})}, \qquad \mathbf{x} \in \Omega.$$

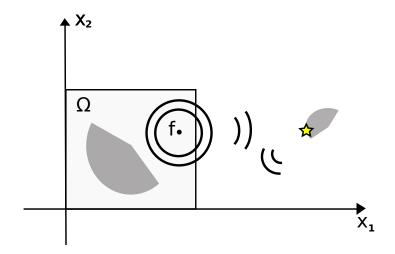
- Close system using Absorbing Boundary Condition (ABC) or Absorbing Layer (AL).
- N pts per dimension, h = 1/N.



Issue: absorbing layers tend to get thick in heterogeneous media.

Absorbing Layers in heterogeneous media

Physical width L > 1 or width in number of points w > N.



Our numerical scheme

Goal: Compress costly ABC or AL to speed up Helmholtz solver

Step 1: Obtain the exterior Dirichlet-to-Neumann (DtN) map D

• Matrix probing with solves of exterior problem

Step 2: Obtain a fast algorithm for matrix-vector products of D

• Partitioned low-rank (PLR) matrices, compress off-diagonal blocks

$$\begin{array}{c} D \xrightarrow{\text{probing}} \tilde{D} \xrightarrow{\text{PLR}} \overline{D} \end{array}$$

Step 1: Obtain the exterior DtN map D

$$D \xrightarrow{\text{probing}} \tilde{D} \xrightarrow{\text{PLR}} \overline{D}$$

$$\xrightarrow{\text{expansion}} \tilde{D}$$

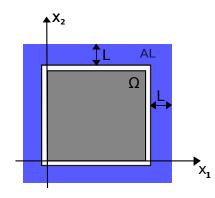
The exterior problem to obtain the exterior DtN map

$$\Delta u(\mathbf{x}) + \frac{\omega^2}{c^2(\mathbf{x})} u(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^2 \setminus \Omega$$

- $u(\mathbf{x}) = g(\mathbf{x}), \ \mathbf{x} \in \partial \Omega.$
- Use ABC or AL.
- Solution u_1 on 1^{st} layer outside Ω .
- Obtain product of D with g:

$$Dg = \frac{u_1 - g}{h}.$$

• Use *D* in a Helmholtz solver instead of ABC or AL.



Matrix probing

$$M \in \mathbb{C}^{N \times N}$$
, single random vector z

 \bullet Given: z and Mz

 \bullet Problem: recover M

• Model: there exist B_1, \ldots, B_p (fixed, given) such that

$$M = \sum_{j=1}^{p} c_j B_j$$

 \Rightarrow find c_j .

Matrix probing questions

• How to recover **c**?

$$Mz = \sum_{j=1}^{p} c_j B_j z = \Psi_z \mathbf{c}$$

- ▶ 1 random realization: Ψ_z has dimension N by p.
- q > 1 random realizations: Ψ_z has dimension Nq by p.
- How large can p get?
- Which B_j ?

See Chiu-Demanet, SINUM, 2012 and Bélanger-Rioux-Demanet preprint (submitted), 2014.

Steps of matrix probing and their complexities

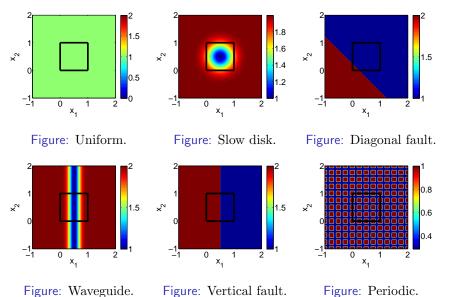
Steps of matrix probing:

- Orthonormalize B_j 's (QR).
- Build Ψ_z from products $B_j z$.
- Obtain Mz.
- Apply pseudoinverse of Ψ_z .

Complexity:

- N^2p^2 .
- \bullet N^2pq .
- q solves of exterior problem.
- Np^2q .

Media considered (plots of $c(\mathbf{x})$)



4 D > 4 D > 4 E > 4 E > E 990

Real part of solutions u, $\omega = 51.2$, N = 1024.

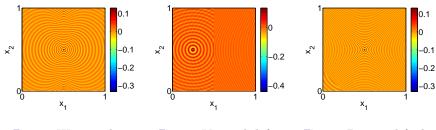


Figure: Waveguide.

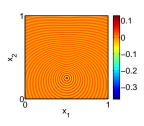


Figure: Vertical, left.

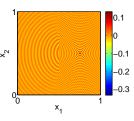


Figure: Diagonal fault.

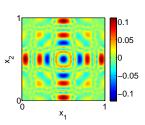


Figure: Slow disk.

Figure: Vertical, right.

Figure: Periodic.

Probing results

$$D \xrightarrow{\text{probing}} \tilde{D} \xrightarrow{\text{PLR}} \overline{D}$$

- Number of basis matrices $p \sim N^{0.2}$ at worst.
- Number of exterior solves q constant as N grows.
- Probing approximation does not degrade with grazing waves.
- Limitations:
 - Easier for smooth media;
 - ► Careful design of basis matrices needed.

Step 2: Obtain a fast algorithm for matrix-vector products of D

$$D \xrightarrow{\text{probing}} \tilde{D} \xrightarrow{\text{PLR}} \overline{D}$$

$$\xrightarrow{\text{expansion}} \tilde{D}$$

Intuition: D_{half} numerically low-rank away from singularity

Kernel of the uniform half-space DtN map: $K(r) = \frac{ik^2H_1^{(1)}(kr)}{2kr}$.

Theorem (RBR, Demanet)

Let $0 < \epsilon \le 1/2$, and $0 < r_0 < 1$, $r_0 = \Theta(1/k)$. There exists an integer J, functions $\{\Phi_j, \chi_j\}_{j=1}^J$ and a number C such that we can approximate K(|x-y|) for $r_0 \le |x-y| \le 1$:

$$K(|x - y|) = \sum_{j=1}^{J} \Phi_j(x) \chi_j(y) + E(x, y)$$

where $|E(x,y)| \le \epsilon$, and $J \le C (\log k \max(|\log \epsilon|, \log k))^2$ with C which does not depend on k or ϵ .

Numerically low-rank \Rightarrow low-rank matrix block

Function

$$K(|x - y|) = \sum_{j=1}^{J} \Phi_j(x) \chi_j(y),$$

$$K(|x_i - y_\ell|) = \sum_{j=1}^{J} \Phi_j(x_i) \chi_j(y_\ell).$$

Matrix $K_{i\ell} = K(|x_i - y_\ell|)$:

$$K = \sum_{j=1}^{J} \vec{\Phi}_{j} \ \vec{\chi}_{j}^{*} = \Phi \ \chi^{*}$$

with $\vec{\Phi}_i$, $\vec{\chi}_i$ the j^{th} columns of matrices Φ , χ .

This is almost the Singular Value Decomposition (SVD) of matrix $K_{i\ell}$.

Proof: D_{half} numerically low-rank away from singularity

Kernel $K(r) = \frac{ik^2H_1^{(1)}(kr)}{2kr}$ for uniform half-space DtN map.

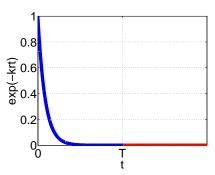
Proof: D_{half} numerically low-rank away from singularity

Kernel $K(r) = \frac{ik^2 H_1^{(1)}(kr)}{2kr}$ for uniform half-space DtN map.

$$\frac{1}{kr} = \int_0^\infty e^{-krt} dt \approx \int_0^T e^{-krt} dt \tag{1}$$

with error

$$\int_{T}^{\infty} e^{-krt} dt \le \epsilon \quad \text{for} \quad T = O(|\log \epsilon|).$$



Proof: D_{half} numerically low-rank away from singularity Use a Gaussian quadrature

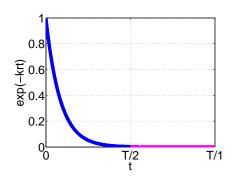
$$\frac{1}{kr} \approx \int_0^T e^{-krt} dt \approx \sum_{j=1}^n w_j e^{-krt_j} = \sum_{j=1}^n w_j e^{-kxt_j} e^{kyt_j} \qquad x > y$$

Proof: D_{half} numerically low-rank away from singularity

Use a Gaussian quadrature

$$\frac{1}{kr} \approx \int_0^T e^{-krt} dt \approx \sum_{j=1}^n w_j e^{-krt_j} = \sum_{j=1}^n w_j e^{-kxt_j} e^{kyt_j} \qquad x > y$$

but need a dyadic partition of the interval for convergence.



Proof: D_{half} numerically low-rank away from singularity

- Kernel $K(r) = \frac{ik^2H_1^{(1)}(kr)}{2kr}$ of uniform half-space DtN map.
- Use Gaussian quadratures for 1/kr on dyadic partition of interval:

 $\log k$ subintervals, $|\log \epsilon|$ pts each

- Treat integral form of Hankel function same way (Martinsson-Rokhlin 2007).
- Multiply 1/kr with $H_1^{(1)}$, total number of quad. pts:

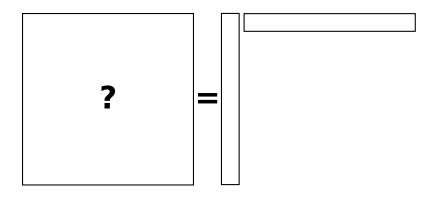
$$J \approx (\log k |\log \epsilon|)^2$$
.

Adaptively, recursively divide blocks of matrix.

Stop when numerical rank $\leq R_{\text{max}}$, with tolerance ϵ .

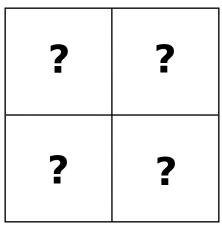
Adaptively, recursively divide blocks of matrix.

Stop when numerical rank $\leq R_{\text{max}}$, with tolerance ϵ .



Adaptively, recursively divide blocks of matrix.

Stop when numerical rank $\leq R_{\text{max}}$, with tolerance $\epsilon \Rightarrow$ "leaf".



Adaptively, recursively divide blocks of matrix.

Stop when numerical rank $\leq R_{\text{max}}$, with tolerance $\epsilon \Rightarrow$ "leaf".

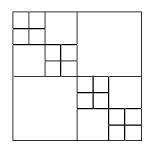
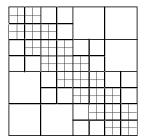


Figure: $\frac{N}{R_{\text{max}}} = 8$, weak Figure: $\frac{N}{R_{\text{max}}} = 16$, hierarchical structure.



strong hierarchical structure.

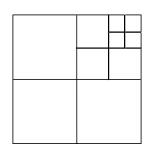


Figure: $\frac{N}{R_{-n}} = 8$, corner PLR structure.

Complexity of compression: PLR matrices

Cost per block B dominated by (randomized) SVD: $O(N_B R_{\text{max}}^2)$.

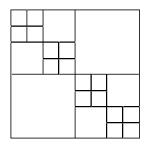
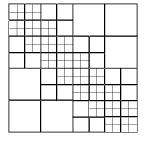
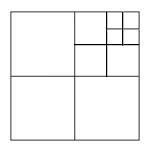


Figure: $\frac{N}{R_{\text{max}}} = 8$, weak Figure: $\frac{N}{R_{\text{max}}} = 16$, Figure: $\frac{N}{R_{\text{max}}} = 8$, h. structure.



strong h. structure.



corner PLR structure.

Total complexity:

$$O(NR_{\max}^2 \log \frac{N}{R_{\max}})$$

$$O(NR_{\rm max}^2\log\frac{N}{R_{\rm max}}) \qquad O(NR_{\rm max}^2\log\frac{N}{R_{\rm max}})$$

$$O(NR_{\rm max}^2)$$

Complexity of matrix-vector products: PLR matrices

Cost per leaf B: $O(N_B R_{\text{max}})$.

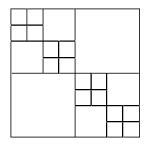
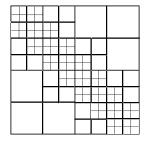
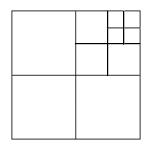


Figure: $\frac{N}{R_{\text{max}}} = 8$, weak Figure: $\frac{N}{R_{\text{max}}} = 16$, Figure: $\frac{N}{R_{\text{max}}} = 8$, h. structure.



strong h. structure.



corner PLR structure.

Total complexity:

$$O(NR_{\text{max}}\log\frac{N}{R_{\text{max}}})$$
 $O(NR_{\text{max}}\log\frac{N}{R_{\text{max}}})$

$$O(NR_{\max}\log\frac{N}{R_{\max}})$$

$$O(NR_{\max})$$

Results of PLR compression after probing

• In general, ask for PLR tolerance

$$\epsilon = \frac{1}{25} \frac{\|D - \tilde{D}\|_F}{\|D\|_F}.$$

Table: $c \equiv 1$

$R_{ m max}$	ϵ	$ D - \overline{D} _F / D _F$	$ u-\overline{u} _F/ u _F$
2	1.6850e - 02	4.2126e - 01	6.5938e - 01
2	1.6802e - 03	4.2004e - 02	7.3655e - 02
2	5.0068e - 05	1.2517e - 03	2.4232e - 03
4	4.4840e - 06	1.1210e - 04	4.0003e - 04
8	4.3176e - 07	1.0794e - 05	1.4305e - 05
8	2.6198e - 08	6.5496e - 07	2.1741e - 06

Results of PLR compression after probing

Table: c is the diagonal fault.

R_{\max}	ϵ	$ D - \overline{D} _F / D _F$	$ u-\overline{u} _F/ u _F$
2	5.7124e - 03	1.4281e - 01	5.3553e - 01
2	7.6432e - 04	1.9108e - 02	7.8969e - 02
4	1.0241e - 04	2.5602e - 03	8.7235e - 03

Table: c is the periodic medium.

R_{\max}	ϵ	$ D - \overline{D} _F / D _F$	$ u-\overline{u} _F/ u _F$
2	5.1868e - 03	1.2967e - 01	2.1162e - 01
2	1.2242e - 03	3.0606e - 02	5.9562e - 02
8	3.6273e - 04	9.0682e - 03	2.6485e - 02

PLR compression after probing

$$D \xrightarrow{\text{probing}} \tilde{D} \xrightarrow{\text{PLR}} \overline{D}$$

- Small R_{max} needed in practice, $R_{\text{max}} \leq 8$.
- Nearly linear matrix-vector product even in heterogeneous media.
- PLR compression is very flexible, "one size fits all".

Conclusion – so far

- \bullet Insights from half-space DtN map to expand then compress exterior DtN map
- Handful of PDE solves \Rightarrow exterior DtN map to good accuracy \Rightarrow HE solution to good accuracy
- Compressed DtN map \Rightarrow fast matrix-vector products

Conclusion – complexities

Constructing D:

- Matrix probing expansion, assuming fast solver.
- PLR compression.

Complexity:

- $\bullet \sim q(N+w)^2, \qquad q \le 50.$
- $\bullet \sim NR_{\max}^2$, $R_{\max} \leq 8$.

Applying D:

- Dense matrix-vector product.
- PLR matrix-vector product.

Complexity:

- $\sim 16N^2$.

Conclusion – outlook

- 3D
- Probe (and compress) entire structure of the Green's function?
- Integrate in Domain Decomposition Methods