Publications by Year: 2021

2021

Aiewsakun, P., P. Nilplub, P. Wongtrakoongate, S. Hongeng, and A. Thitithanyanont. 2021. SARS-CoV-2 Genetic Variations Associated With COVID-19 Pathogenicity. Microbial Genomics. https://doi.org/10.1099/mgen.0.000734.

In this study, we performed genome-wide association analyses on SARS-CoV-2 genomes to identify genetic mutations associated with pre-symptomatic/asymptomatic COVID-19 cases. Various potential covariates and confounding factors of COVID-19 severity, including patient age, gender and country, as well as virus phylogenetic relatedness were adjusted for. In total, 3021 full-length genomes of SARS-CoV-2 generated from original clinical samples and whose patient status could be determined conclusively as either ‘pre-symptomatic/asymptomatic’ or ‘symptomatic’ were retrieved from the GISAID database. We found that the mutation 11 083G>T, located in the coding region of non-structural protein 6, is significantly associated with asymptomatic COVID-19. Patient age is positively correlated with symptomatic infection, while gender is not significantly correlated with the development of the disease. We also found that the effects of the mutation, patient age and gender do not vary significantly among countries, although each country appears to have varying baseline chances of COVID-19 symptom development.

Wang, W. H., A. N. Urbina, C . Y. Lin, Z. S. Yang, W. Assavalapsakul, A. Thitithanyanont, P. L. Lu, Y. H. Chen, and S. F. Wang. 2021. Targets and Strategies for Vaccine Development Against Dengue Viruses. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2021.112304 .

Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.

Vacharathit, V., S. Srichatrapimuk, S. Manopwisedjaroen, S. Kirdlarp, C. Srisaowakarn, C. Setthaudom, N. Inrueangsri, et al. 2021. SARS‐CoV‐2 Neutralizing Antibodies Decline over One Year and Patients With Severe COVID‐19 Pneumonia Display a Unique Cytokine Profile. International Journal of Infectious Diseases. https://doi.org/ 10.1016/j.ijid.2021.09.021 .

Objectives: As coronavirus disease 2019 (COVID-19) rages on worldwide, there is an urgent need to characterize immune correlates of protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and to identify immune determinants of COVID-19 severity.

Methods: This study examined the longitudinal profiles of neutralizing antibody (NAb) titers in hospitalized COVID-19 patients clinically diagnosed with mild symptoms, pneumonia, or severe pneumonia, up to 12 months after illness onset, using live-virus neutralization. Multiplex, correlation, and network analyses were used to characterize serum-derived inflammatory cytokine profiles in all severity groups.

Results: Peak NAb titers correlated with disease severity, and NAb titers declined over the course of 12 months regardless of severity. Multiplex analyses revealed that IP-10, IL-6, IL-7, and VEGF-α were significantly elevated in severe pneumonia cases compared to those with mild symptoms and pneumonia cases. Correlation and network analyses further suggested that cytokine network formation was distinct in different COVID-19 severity groups.

Conclusions: The study findings inform on the long-term kinetics of naturally acquired serological immunity against SARS-CoV-2 and highlight the importance of identifying key cytokine networks for potential therapeutic immunomodulation.

Polyiam, K., W. Phoolcharoen, N. Butkhot, C. Srisaowakarn, A .Thitithanyanont, P. Auewarakul, T. Hoonsuwan, M. Ruengjitchatchawalya, P. Mekvichitsaeng, and Y. M. Roshorm. 2021. “Immunodominant Linear B Cell Epitopes in the Spike and Membrane Proteins of SARS-CoV-2 Identified by Immunoinformatics Prediction and Immunoassay”. Scientific Reports.

SARS-CoV-2 continues to infect an ever-expanding number of people, resulting in an increase in the number of deaths globally. With the emergence of new variants, there is a corresponding decrease in the currently available vaccine efficacy, highlighting the need for greater insights into the viral epitope profile for both vaccine design and assessment. In this study, three immunodominant linear B cell epitopes in the SARS-CoV-2 spike receptor-binding domain (RBD) were identified by immunoinformatics prediction, and confirmed by ELISA with sera from Macaca fascicularis vaccinated with a SARS-CoV-2 RBD subunit vaccine. Further immunoinformatics analyses of these three epitopes gave rise to a method of linear B cell epitope prediction and selection. B cell epitopes in the spike (S), membrane (M), and envelope (E) proteins were subsequently predicted and confirmed using convalescent sera from COVID-19 infected patients. Immunodominant epitopes were identified in three regions of the S2 domain, one region at the S1/S2 cleavage site and one region at the C-terminus of the M protein. Epitope mapping revealed that most of the amino acid changes found in variants of concern are located within B cell epitopes in the NTD, RBD, and S1/S2 cleavage site. This work provides insights into B cell epitopes of SARS-CoV-2 as well as immunoinformatics methods for B cell epitope prediction, which will improve and enhance SARS-CoV-2 vaccine development against emergent variants.

Kongsomros, S., A. Suksatu, P. Kanjanasirirat, S. Manopwisedjaroen, S. Prasongtanakij, K. Jearawuttanakul, S. Borwornpinyo, S. Hongeng, A. Thitithanyanont, and S. Chutipongtanate. 2021. Anti-SARS-CoV-2 Activity of Extracellular Vesicle Inhibitors: Screening, Validation, and Combination With Remdesivir. Biomedicines. https://doi.org/10.3390/biomedicines9091230.

The coronavirus disease 2019 (COVID-19) pandemic severely impacts health, economy, and society worldwide. Antiviral drugs against SARS-CoV-2 are urgently needed to cope with this global crisis. It has been found that the biogenesis and release mechanisms of viruses share a common pathway with extracellular vesicles (EVs). We hypothesized that small molecule inhibitors of EV biogenesis/release could exert an anti-SARS-CoV-2 effect. Here, we screened 17 existing EV inhibitors and found that calpeptin, a cysteine proteinase inhibitor, exhibited the most potent anti-SARS-CoV-2 activity with no apparent cytotoxicity. Calpeptin demonstrated the dose-dependent inhibition against SARS-CoV-2 viral nucleoprotein expression in the infected cells with a half-maximal inhibitory concentration (IC50) of 1.44 µM in Vero-E6 and 26.92 µM in Calu-3 cells, respectively. Moreover, calpeptin inhibited the production of infectious virions with the lower IC50 of 0.6 µM in Vero E6 cells and 10.12 µM in Calu-3 cells. Interestingly, a combination of calpeptin and remdesivir, the FDA-approved antiviral drug against SARS-CoV-2 viral replication, significantly enhanced the anti-SARS-CoV-2 effects compared to monotherapy. This study discovered calpeptin as a promising candidate for anti-SARS-CoV-2 drug development. Further preclinical and clinical studies are warranted to elucidate the therapeutic efficacy of calpeptin and remdesivir combination in COVID-19.

Peletta, A., E. Prompetchara, K. Tharakhet, P. Kaewpang, S. Buranapraditkun, T. Techawiwattanaboon, T. Jbilou, et al. 2021. DNA Vaccine Administered by Cationic Lipoplexes or by in Vivo Electroporation Induces Comparable Antibody Responses Against SARS-CoV-2 in Mice. Vaccines. https://doi.org/10.3390/vaccines9080874 .

In view of addressing the global necessity of an effective vaccine in the SARS-CoV-2 pandemic, a plasmid DNA vaccine, expressing for the spike (S) protein and formulated in lipoplexes, was manufactured and tested for in vitro transfection and in vivo immunogenicity. Blank cationic liposomes of 130.9 ± 5.8 nm in size and with a zeta potential of +48 ± 12 mV were formulated using the thin-film layer rehydration method. Liposomes were complexed with pCMVkan-S at different N/P ratios. Ratios of 0.25:1 and 1:1 were selected according to their complex stability and controlled size compared to other ratios and tested in vitro for transfection studies and in vivo for immunogenicity. Both selected formulations showed enhanced neutralizing antibody responses compared to pCMVkan-S injected alone, as well as an increased T cell response. The titers observed were similar to those of intramuscular electroporation (IM-EP), which was set as an efficacy goal.

Siriwattananon, K., S. Manopwisedjaroen, B. Shanmugaraj, E. Prompetchara, C. Ketloy, S. Buranapraditkun, K. Tharakhet, et al. 2021. Immunogenicity Studies of Plant-Produced SARS-CoV-2 Receptor Binding Domain-Based Subunit Vaccine Candidate With Different Adjuvant Formulations. Vaccines. https://doi.org/10.3390/vaccines9070744 .

Due to the rapid transmission of the coronavirus disease 2019 (COVID-19) causing serious public health problems and economic burden, the development of effective vaccines is a high priority for controlling the virus spread. Our group has previously demonstrated that the plant-produced receptor-binding domain (RBD) of SARS-CoV-2 fused with Fc of human IgG was capable of eliciting potent neutralizing antibody and cellular immune responses in animal studies, and the immunogenicity could be improved by the addition of an alum adjuvant. Here, we performed a head-to-head comparison of different commercially available adjuvants, including aluminum hydroxide gel (alum), AddaVax (MF59), monophosphoryl lipid A from Salmonella minnesota R595 (mPLA-SM), and polyinosinic-polycytidylic acid (poly(I:C)), in mice by combining them with plant-produced RBD-Fc, and the differences in the immunogenicity of RBD-Fc with different adjuvants were evaluated. The specific antibody responses in terms of total IgG, IgG1, and IgG2a subtypes and neutralizing antibodies, as well as vaccine-specific T-lymphocyte responses, induced by the different tested adjuvants were compared. We observed that all adjuvants tested here induced a high level of total IgG and neutralizing antibodies, but mPLA-SM and poly (I:C) showed the induction of a balanced IgG1 and IgG2a (Th2/Th1) immune response. Further, poly (I:C) significantly increased the frequency of IFN-γ-expressing cells compared with control, whereas no significant difference was observed between the adjuvanted groups. This data revealed the adjuvants' role in enhancing the immune response of RBD-Fc vaccination and the immune profiles elicited by different adjuvants, which could prove helpful for the rational development of next-generation SARS-CoV-2 RBD-Fc subunit vaccines. However, additional research is essential to further investigate the efficacy and safety of this vaccine formulation before clinical trials.

Seephetdee, C., N. Buasri, K. Bhukhai, K. Srisanga, S. Manopwisedjaroen, S. Lertjintanakit, N. Phueakphud, et al. 2021. Mice Immunized With the Vaccine Candidate Hexapro Spike Produce Neutralizing Antibodies Against SARS-CoV-2. Vaccines. https://doi.org/ 10.3390/vaccines9050498 .

Updated and revised versions of COVID-19 vaccines are vital due to genetic variations of the SARS-CoV-2 spike antigen. Furthermore, vaccines that are safe, cost-effective, and logistic-friendly are critically needed for global equity, especially for middle- to low-income countries. Recombinant protein-based subunit vaccines against SARS-CoV-2 have been reported using the receptor-binding domain (RBD) and the prefusion spike trimers (S-2P). Recently, a new version of prefusion spike trimers, named HexaPro, has been shown to possess two RBD in the "up" conformation, due to its physical property, as opposed to just one exposed RBD found in S-2P. Importantly, this HexaPro spike antigen is more stable than S-2P, raising its feasibility for global logistics and supply chain. Here, we report that the spike protein HexaPro offers a promising candidate for the SARS-CoV-2 vaccine. Mice immunized by the recombinant HexaPro adjuvanted with aluminum hydroxide using a prime-boost regimen produced high-titer neutralizing antibodies for up to 56 days after initial immunization against live SARS-CoV-2 infection. Also, the level of neutralization activity is comparable to that of convalescence sera. Our results indicate that the HexaPro subunit vaccine confers neutralization activity in sera collected from mice receiving the prime-boost regimen.

Siriwattananon, K., S. Manopwisedjaroen, B. Shanmugaraj, K. Rattanapisit, S. Phumiamorn, S. Sapsutthipas, S. Trisiriwanich, et al. 2021. Plant-Produced Receptor-Binding Domain of SARS-CoV-2 Elicits Potent Neutralizing Responses in Mice and Non-Human Primates. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.682953 .

The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected global public health and economy. Despite the substantial efforts, only few vaccines are currently approved and some are in the different stages of clinical trials. As the disease rapidly spreads, an affordable and effective vaccine is urgently needed. In this study, we investigated the immunogenicity of plant-produced receptor-binding domain (RBD) of SARS-CoV-2 in order to use as a subunit vaccine. In this regard, RBD of SARS-CoV-2 was fused with Fc fragment of human IgG1 and transiently expressed in Nicotiana benthamiana by agroinfiltration. The plant-produced RBD-Fc fusion protein was purified from the crude extract by using protein A affinity column chromatography. Two intramuscular administration of plant-produced RBD-Fc protein formulated with alum as an adjuvant have elicited high neutralization titers in immunized mice and cynomolgus monkeys. Further it has induced a mixed Th1/Th2 immune responses and vaccine-specific T-lymphocyte responses which was confirmed by interferon-gamma (IFN-γ) enzyme-linked immunospot assay. Altogether, our results demonstrated that the plant-produced SARS-CoV-2 RBD has the potential to be used as an effective vaccine candidate against SARS-CoV-2. To our knowledge, this is the first report demonstrating the immunogenicity of plant-produced SARS-CoV-2 RBD protein in mice and non-human primates.