PUBLICATIONS
2024
Respiratory syncytial virus (RSV) is a highly infectious respiratory virus that causes serious illness, particularly in young children, elderly people, and those with immunocompromised individuals. RSV infection is the leading cause of infant hospitalization and can lead to serious complications such as pneumonia and bronchiolitis. Currently, there is an RSV vaccine approved exclusively for the elderly population, but no approved vaccine specifically designed for infants or any other age groups. Therefore, it is crucial to continue the development of an RSV vaccine specifically tailored for these populations. In this study, the immunogenicity of the two plant-produced RSV-F Fc fusion proteins (Native construct and structural stabilized construct) were examined to assess them as potential vaccine candidates for RSV. The RSV-F Fc fusion proteins were transiently expressed in Nicotiana benthamiana and purified using protein A affinity column chromatography. The recombinant RSV-F Fc fusion protein was recognized by the monoclonal antibody Motavizumab specific against RSV-F protein. Moreover, the immunogenicity of the two purified RSV-F Fc proteins were evaluated in mice by formulating with different adjuvants. According to our results, the plant-produced RSV-F Fc fusion protein is immunogenic in mice. These preliminary findings, demonstrate the immunogenicity of plant-based RSV-F Fc fusion protein, however, further preclinical studies such as antigen dose and adjuvant optimization, safety, toxicity, and challenge studies in animal models are necessary in order to prove the vaccine efficacy.
ChulaCov19 mRNA vaccine demonstrated promising phase 1 results. Healthy adults aged 18-59 years were double-blind randomised 4:1 to receive two intramuscular doses of ChulaCov19 50 µg or placebo. Primary endpoints were safety and microneutralization antibody against-wild-type (Micro-VNT50) at day 50. One hundred fifty adults with median (IQR) age 37 (30-46) years were randomised. ChulaCov19 was well tolerated, and most adverse events were mild to moderate and temporary. Geometric mean titres (GMT) of neutralizing titre against wild-type for ChulaCov19 on day 50 were 1367 IU/mL. T-cell IFN-γ-ELISpot showed the highest responses at one week (Day29) after dose 2 then gradually declined. ChulaCov19 50 µg is well tolerated and elicited high neutralizing antibodies and strong T-cell responses in healthy adults.Trial registration number: ClinicalTrials.gov Identifier NCT04566276, 28/09/2020.
2023
OBJECTIVES: The study aimed to compare the immunogenicity and safety of fractional (half) third doses of heterologous COVID-19 vaccines (AZD1222 or BNT162b2) to full doses after the two-dose CoronaVac and when boosting after three different extended intervals.
METHODS: At 60-<90, 90-<120, or 120-180 days intervals after the two-dose CoronaVac, participants were randomized to full-dose or half-dose AZD1222 or BNT162b2, followed up at day 28, 60, and 90. Vaccination-induced immune responses to Ancestral, Delta, and Omicron BA.1 strains were evaluated by antispike, pseudovirus, and microneutralization and T cell assays. Descriptive statistics and noninferiority cut-offs were reported as geometric mean concentration or titer and concentration or titer ratios comparing baseline to day 28 and day 90 and different intervals.
RESULTS: No safety concerns were detected. All assays and intervals showed noninferior immunogenicity between full doses and half doses. However, full-dose vaccines and/or longer 120-180-day intervals substantially improved the immunogenicity (measured by antispike or measured by pseudotyped virus neutralizing titers 50; P <0.001). Seroconversion rates were over 90% against the SARS-CoV-2 strains by all assays. Immunogenicity waned more quickly with half doses than full doses but remained high against the Ancestral or Delta strains. Against Omicron, the day 28 immunogenicity increased with longer intervals than shorter intervals for full-dose vaccines.
CONCLUSION: Immune responses after day 28 when boosting at longer intervals after the two-dose CoronaVac was optimal. Half doses met the noninferiority criteria compared with the full dose by all the immune assays assessed.
INTRODUCTION: Influenza A virus (IAV) is highly contagious and causes respiratory diseases in birds, mammals, and humans. Some strains of IAV, whether from human or avian sources, have developed resistance to existing antiviral drugs. Therefore, the discovery of new influenza antiviral drugs and therapeutic approaches is crucial. Recent studies have shown that galectins (Gal), a group of β-galactose-binding lectins, play a role in regulating various viral infections, including IAVs.
AREAS COVERED: This review provides an overview of the roles of different galectins in IAV infection. We discuss the characteristics of galectins, their impact on IAV infection and spread, and highlight their positive or negative regulatory functions and potential mechanisms during IAV infection. Furthermore, we explore the potential application of galectins in IAV therapy.
EXPERT OPINION: Galectins were first identified in the mid-1970s, and currently, 15 mammalian galectins have been identified. While all galectin members possess the carbohydrate recognition domain (CRD) that interacts with β-galactoside, their regulatory functions vary in different DNA or RNA virus infections. Certain galectin members have been found to regulate IAV infection through diverse mechanisms. Therefore, a comprehensive understanding of their roles in IAV infection is essential, as it may pave the way for novel therapeutic strategies.
Establishment of an mRNA vaccine platform in low- and middle-income countries (LMICs) is important to enhance vaccine accessibility and ensure future pandemic preparedness. Here, we describe the preclinical studies of "ChulaCov19", a SARS-CoV-2 mRNA encoding prefusion-unstabilized ectodomain spike protein encapsulated in lipid nanoparticles (LNP). In female BALB/c mice, ChulaCov19 at 0.2, 1, 10, and 30 μg elicits robust neutralizing antibody (NAb) and T cell responses in a dose-dependent relationship. The geometric mean titers (GMTs) of NAb against wild-type (WT, Wuhan-Hu1) virus are 1,280, 11,762, 54,047, and 62,084, respectively. Higher doses induce better cross-NAb against Delta (B.1.617.2) and Omicron (BA.1 and BA.4/5) variants. This elicited immunogenicity is significantly higher than those induced by homologous CoronaVac or AZD1222 vaccination. In a heterologous prime-boost study, ChulaCov19 booster dose generates a 7-fold increase of NAb against Wuhan-Hu1 WT virus and also significantly increases NAb response against Omicron (BA.1 and BA.4/5) when compared to homologous CoronaVac or AZD1222 vaccination. Challenge studies show that ChulaCov19 protects human-ACE-2-expressing female mice from COVID-19 symptoms, prevents viremia and significantly reduces tissue viral load. Moreover, anamnestic NAb response is undetectable in challenge animals. ChulaCov19 is therefore a promising mRNA vaccine candidate either as a primary or boost vaccination and has entered clinical development.
BACKGROUND: Immunogenicity and reactogenicity of COVID-19 vaccines have been established in various groups of immunosuppressed patients; however, studies involving patients with immune-mediated dermatological diseases (IMDDs) are scarce.
OBJECTIVES: To investigate the influence of IMDDs on the development of SARS-CoV-2-specific immunity and side-effects following ChAdOx1-S[recombinant] vaccination.
METHODS: This prospective cohort study included 127 patients with IMDDs and 97 participants without immune-mediated diseases who received ChAdOx1-S[recombinant]. SARS-CoV-2-specific immunity and side-effect profiles were assessed at 1 month postvaccination and compared between groups. Immunological (primary) outcomes were the percentages of participants who tested positive for neutralizing antibodies [seroconversion rate (SR)] and those who developed T-cell-mediated immunity demonstrated by an interferon-γ-releasing assay (IGRA) [positive IGRA rate (+IGRA)]. Reactogenicity-related (secondary) outcomes were the unsolicited adverse reactions and worsening of IMDD activity reflected by the uptitration of immunosuppressants during and within 1 month of vaccination.
RESULTS: Overall, the SR for the IMDD group was similar to that of participants without immune-mediated conditions (75·6 vs. 84·5, P = 0·101), whereas + IGRA was lower (72·4 vs. 88·7, P = 0·003). Reactogenicity was similar between groups. No severe adverse reaction was reported. By stratifying the participants in the IMDD group according to individual disease, the immunogenicity of the vaccine was lowest in patients with autoimmune bullous diseases (AIBD) (SR 64·5%, +IGRA 62·9%) and highest in patients with psoriasis (SR 87·7%, +IGRA 80·7%). The reverse trend was found for vaccine-related reactions. Immunosuppressants were uptitrated in 15·8% of cases; 75% of these were patients with AIBD.
CONCLUSIONS: Among participants with IMDDs, ChAdOx1-S[recombinant] showed good immunogenicity among patients with psoriasis, but demonstrated lower levels of immunogenicity for patients with AIBD. Some patients, especially patients with AIBD, should be closely monitored as they may require treatment escalation within 1 month postvaccination.
DC-SIGN and Galectin-3 are two different lectins and have been reported to participate in regulation of several virus infections. WHO has pointed that H5N1 and H7N9 avian influenza viruses (AIVs) play continuous threats to global health. AIV hemagglutinin (HA) protein-a highly glycosylated protein-mediates influenza infection and was proposed to have DC-SIGN and Gal3 interactive domains. This study aims to address the individual and collaborative roles of DC-SIGN and Gal3 toward AIVs infection. Firstly, A549 cells with DC-SIGN expression or Gal3-knockdown, via lentiviral vector-mediated CD209 gene expression or LGALS-3 gene knockdown, respectively were generated. Quantitative reverse transcription PCR (qRT-PCR) results indicated that DC-SIGN expression and Gal3 knockdown in A549 cells significantly promoted and ameliorated HA or NP gene expression, respectively after H5N1 and H7N9-reverse genetics (RG) virus postinfections (P < 0.05). Similar results observed in immunoblotting, indicating that DC-SIGN expression significantly facilitated H5N1-RG and H7N9-RG infections (P < 0.05), whereas Gal3 knockdown significantly reduced both viral infections (P < 0.05). Furthermore, we found that DC-SIGN and Gal3 co-expression significantly enhanced infectivity of both H5N1-RG and H7N9-RG viruses (P < 0.01) and higher regulatory capabilities by DC-SIGN and Gal3 in H5N1-RG than H7N9-RG were noted. The promoting effect mainly relied on exogenous Gal3 and DC-SIGN directly interacting with the HA protein of H5N1 or H7N9 AIVs, subsequently enhancing virus infection. This study sheds light on two different lectins individually and collaboratively regulating H5N1 and H7N9 AIVs infection and suggests that inhibitors against DC-SIGN and Gal3 interacting with HA could be utilized as alternative antiviral strategies.
SARS-CoV-2 causes devastating impact on the human population and has become a major public health concern. The frequent emergence of SARS-CoV-2 variants of concern urges the development of safe and efficacious vaccine against SARS-CoV-2 variants. We developed a candidate vaccine Baiya SARS-CoV-2 Vax 1, based on SARS-CoV-2 receptor-binding domain (RBD) by fusing with the Fc region of human IgG. The RBD-Fc fusion was produced in Nicotiana benthamiana. Previously, we reported that this plant-produced vaccine is effective in inducing immune response in both mice and non-human primates. Here, the efficacy of our vaccine candidate was tested in Syrian hamster challenge model. Hamsters immunized with two intramuscular doses of Baiya SARS-CoV-2 Vax 1 induced neutralizing antibodies against SARS-CoV-2 and protected from SARS-CoV-2 challenge with reduced viral load in the lungs. These preliminary results demonstrate the ability of plant-produced subunit vaccine Baiya SARS-CoV-2 Vax 1 to provide protection against SARS-CoV-2 infection in hamsters.