PUBLICATIONS

2023

Yang, Zih-Syuan, Wen-Hung Wang, Yu-Ting Lin, Chih-Yen Lin, Aspiro Nayim Urbina, Arunee Thitithanyanont, Po-Liang Lu, Yen-Hsu Chen, and Sheng-Fan Wang. (2023) 2023. “DC-SIGN and Galectin-3 Individually and Collaboratively Regulate H5N1 and H7N9 Avian Influenza A Virus Infection via Interaction With Viral Envelope Hemagglutinin Protein.”. Glycobiology 33 (4): 311-24. https://doi.org/10.1093/glycob/cwac078.

DC-SIGN and Galectin-3 are two different lectins and have been reported to participate in regulation of several virus infections. WHO has pointed that H5N1 and H7N9 avian influenza viruses (AIVs) play continuous threats to global health. AIV hemagglutinin (HA) protein-a highly glycosylated protein-mediates influenza infection and was proposed to have DC-SIGN and Gal3 interactive domains. This study aims to address the individual and collaborative roles of DC-SIGN and Gal3 toward AIVs infection. Firstly, A549 cells with DC-SIGN expression or Gal3-knockdown, via lentiviral vector-mediated CD209 gene expression or LGALS-3 gene knockdown, respectively were generated. Quantitative reverse transcription PCR (qRT-PCR) results indicated that DC-SIGN expression and Gal3 knockdown in A549 cells significantly promoted and ameliorated HA or NP gene expression, respectively after H5N1 and H7N9-reverse genetics (RG) virus postinfections (P < 0.05). Similar results observed in immunoblotting, indicating that DC-SIGN expression significantly facilitated H5N1-RG and H7N9-RG infections (P < 0.05), whereas Gal3 knockdown significantly reduced both viral infections (P < 0.05). Furthermore, we found that DC-SIGN and Gal3 co-expression significantly enhanced infectivity of both H5N1-RG and H7N9-RG viruses (P < 0.01) and higher regulatory capabilities by DC-SIGN and Gal3 in H5N1-RG than H7N9-RG were noted. The promoting effect mainly relied on exogenous Gal3 and DC-SIGN directly interacting with the HA protein of H5N1 or H7N9 AIVs, subsequently enhancing virus infection. This study sheds light on two different lectins individually and collaboratively regulating H5N1 and H7N9 AIVs infection and suggests that inhibitors against DC-SIGN and Gal3 interacting with HA could be utilized as alternative antiviral strategies.

Shanmugaraj, Balamurugan, Narach Khorattanakulchai, Weena Paungpin, Yada Akkhawattanangkul, Suwimon Manopwisedjaroen, Arunee Thitithanyanont, and Waranyoo Phoolcharoen. (2023) 2023. “Immunogenicity and Efficacy of Recombinant Subunit SARS-CoV-2 Vaccine Candidate in the Syrian Hamster Model.”. Biotechnology Reports (Amsterdam, Netherlands) 37: e00779. https://doi.org/10.1016/j.btre.2022.e00779.

SARS-CoV-2 causes devastating impact on the human population and has become a major public health concern. The frequent emergence of SARS-CoV-2 variants of concern urges the development of safe and efficacious vaccine against SARS-CoV-2 variants. We developed a candidate vaccine Baiya SARS-CoV-2 Vax 1, based on SARS-CoV-2 receptor-binding domain (RBD) by fusing with the Fc region of human IgG. The RBD-Fc fusion was produced in Nicotiana benthamiana. Previously, we reported that this plant-produced vaccine is effective in inducing immune response in both mice and non-human primates. Here, the efficacy of our vaccine candidate was tested in Syrian hamster challenge model. Hamsters immunized with two intramuscular doses of Baiya SARS-CoV-2 Vax 1 induced neutralizing antibodies against SARS-CoV-2 and protected from SARS-CoV-2 challenge with reduced viral load in the lungs. These preliminary results demonstrate the ability of plant-produced subunit vaccine Baiya SARS-CoV-2 Vax 1 to provide protection against SARS-CoV-2 infection in hamsters.

Chen, Lung-Chien, Meng-Chi Li, Kai-Ren Chen, Yu-Jui Cheng, Xun-Ying Wu, Sih-An Chen, Meng-Jey Youh, et al. (2023) 2023. “Facile and Unplugged Surface Plasmon Resonance Biosensor With NIR-Emitting Perovskite Nanocomposites for Fast Detection of SARS-CoV-2.”. Analytical Chemistry 95 (18): 7186-94. https://doi.org/10.1021/acs.analchem.2c05661.

The emergence of the coronavirus disease 2019 (COVID-19) pandemic prompted researchers to develop portable biosensing platforms, anticipating to detect the analyte in a label-free, direct, and simple manner, for deploying on site to prevent the spread of the infectious disease. Herein, we developed a facile wavelength-based SPR sensor built with the aid of a 3D printing technology and synthesized air-stable NIR-emitting perovskite nanocomposites as the light source. The simple synthesis processes for the perovskite quantum dots enabled low-cost and large-area production and good emission stability. The integration of the two technologies enabled the proposed SPR sensor to exhibit the characteristics of lightweight, compactness, and being without a plug, just fitting the requirements of on-site detection. Experimentally, the detection limit of the proposed NIR SPR biosensor for refractive index change reached the 10-6 RIU level, comparable with that of state-of-the-art portable SPR sensors. In addition, the bio-applicability of the platform was validated by incorporating a homemade high-affinity polyclonal antibody toward the SARS-CoV-2 spike protein. The results demonstrated that the proposed system was capable of discriminating between clinical swab samples collected from COVID-19 patients and healthy subjects because the used polyclonal antibody exhibited high specificity against SARS-CoV-2. Most importantly, the whole measurement process not only took less than 15 min but also needed no complex procedures or multiple reagents. We believe that the findings disclosed in this work can open an avenue in the field of on-site detection for highly pathogenic viruses.

Muangnoicharoen, Sant, Rakpong Wiangcharoen, Sira Nanthapisal, Supitcha Kamolratakul, Saranath Lawpoolsri, Anan Jongkaewwattana, Arunee Thitithanyanont, et al. (2023) 2023. “Single Ad26.COV2.S Booster Dose Following Two Doses of BBIBP-CorV Vaccine Against SARS-CoV-2 Infection in Adults: Day 28 Results of a Phase 1/2 Open-Label Trial.”. Vaccine 41 (32): 4648-57. https://doi.org/10.1016/j.vaccine.2023.06.043.

BACKGROUND: The inactivated COVID-19 whole-virus vaccine BBIBP-CorV has been extensively used worldwide. Heterologous boosting after primary vaccination can induce higher immune responses against SARS-CoV-2 than homologous boosting. The safety and immunogenicity after 28 days of a single Ad26.COV2.S booster dose given at different intervals after 2 doses of BBIBP-CorV are presented.

METHODS: This open-label phase 1/2 trial was conducted in healthy adults in Thailand who had completed 2-dose primary vaccination with BBIBP-CorV. Participants received a single booster dose of Ad26.COV2.S (5 × 1010 virus particles) 90-240 days (Group A1; n = 360) or 45-75 days (Group A2; n = 66) after the second BBIBP-CorV dose. Safety and immunogenicity were assessed over 28 days. Binding IgG antibodies to the full-length pre-fusion Spike and anti-nucleocapsid proteins of SARS-CoV-2 were measured by enzyme-linked immunosorbent assay. The SARS-CoV-2 pseudovirus neutralization assay and live virus microneutralization assay were used to quantify the neutralizing activity of antibodies against ancestral SARS-CoV-2 (Wuhan-Hu-1) and the delta (B.1.617.2) and omicron (B.1.1.529/BA.1 and BA.2) variants. The cell-mediated immune response was measured using a quantitative interferon (IFN)-γ release assay in whole blood.

RESULTS: Solicited local and systemic adverse events (AEs) on days 0-7 were mostly mild, as were unsolicited vaccine-related AEs during days 0-28, with no serious AEs. On day 28, anti-Spike binding antibodies increased from baseline by 487- and 146-fold in Groups A1 and A2, and neutralizing antibodies against ancestral SARS-CoV-2 by 55- and 37-fold, respectively. Humoral responses were strongest against ancestral SARS-CoV-2, followed by the delta, then the omicron BA.2 and BA.1 variants. T-cell-produced interferon-γ increased approximately 10-fold in both groups.

CONCLUSIONS: A single heterologous Ad26.COV2.S booster dose after two BBIBP-CorV doses was well tolerated and induced robust humoral and cell-mediated immune responses measured at day 28 in both interval groups.

CLINICAL TRIALS REGISTRATION: NCT05109559.

Kongratanapasert, Teetat, Supasek Kongsomros, Nlin Arya, Kripitch Sutummaporn, Witthawat Wiriyarat, Yada Akkhawattanangkul, Tussapon Boonyarattanasoonthorn, et al. (2023) 2023. “Pharmacological Activities of Fingerroot Extract and Its Phytoconstituents Against SARS-CoV-2 Infection in Golden Syrian Hamsters.”. Journal of Experimental Pharmacology 15: 13-26. https://doi.org/10.2147/JEP.S382895.

BACKGROUND: The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems.

AIM OF STUDY: In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo.

MATERIALS AND METHODS: The infected hamsters were orally administered with vehicle control, fingerroot extract 300 or 1000 mg/kg, or favipiravir 1000 mg/kg at 48 h post-infection for 7 consecutive days. The hamsters (n = 12 each group) were sacrificed at day 2, 4 and 8 post-infection to collect the plasma and lung tissues for analyses of viral output, lung histology and lung concentration of panduratin A.

RESULTS: All animals in treatment groups reported no death, while one hamster in the control group died on day 3 post-infection. All treatments significantly reduced lung pathophysiology and inflammatory mediators, PGE2 and IL-6, compared to the control group. High levels of panduratin A were found in both the plasma and lung of infected animals.

CONCLUSION: Fingerroot extract was shown to be a potential of reducing lung inflammation and cytokines in hamsters. Further studies of the full pharmacokinetics and toxicity are required before entering into clinical development.

Phoolcharoen, Waranyoo, Balamurugan Shanmugaraj, Narach Khorattanakulchai, Piyanate Sunyakumthorn, Sathit Pichyangkul, Pornnarin Taepavarapruk, Wanlapa Praserthsee, et al. (2023) 2023. “Preclinical Evaluation of Immunogenicity, Efficacy and Safety of a Recombinant Plant-Based SARS-CoV-2 RBD Vaccine Formulated With 3M-052-Alum Adjuvant.”. Vaccine 41 (17): 2781-92. https://doi.org/10.1016/j.vaccine.2023.03.027.

Cost-effective, and accessible vaccines are needed for mass immunization to control the ongoing coronavirus disease 2019 (COVID-19), especially in low- and middle-income countries (LMIC).A plant-based vaccine is an attractive technology platform since the recombinant proteins can be easily produced at large scale and low cost. For the recombinant subunit-based vaccines, effective adjuvants are crucial to enhance the magnitude and breadth of immune responses elicited by the vaccine. In this study, we report a preclinical evaluation of the immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052 (TLR7/8 agonist)-Alum adjuvant. This vaccine formulation, named Baiya SARS-CoV-2 Vax 2, induced significant levels of RBD-specific IgG and neutralizing antibody responses in mice. A viral challenge study using humanized K18-hACE2 mice has shown that animals vaccinated with two doses of Baiya SARS-CoV-2 Vax 2 established immune protection against SARS-CoV-2. A study in nonhuman primates (cynomolgus monkeys) indicated that immunization with two doses of Baiya SARS-CoV-2 Vax 2 was safe, well tolerated, and induced neutralizing antibodies against the prototype virus and other viral variants (Alpha, Beta, Gamma, Delta, and Omicron subvariants). The toxicity of Baiya SARS-CoV-2 Vax 2 was further investigated in Jcl:SD rats, which demonstrated that a single dose and repeated doses of Baiya SARS-CoV-2 Vax 2 were well tolerated and no mortality or unanticipated findings were observed. Overall, these preclinical findings support further clinical development of Baiya SARS-CoV-2 Vax 2.

Aiewsakun, Pakorn, Worakorn Phumiphanjarphak, Natali Ludowyke, Priyo Budi Purwono, Suwimon Manopwisedjaroen, Chanya Srisaowakarn, Supanuch Ekronarongchai, Ampa Suksatu, Jirundon Yuvaniyama, and Arunee Thitithanyanont. (2023) 2023. “Systematic Exploration of SARS-CoV-2 Adaptation to Vero E6, Vero E6/TMPRSS2, and Calu-3 Cells.”. Genome Biology and Evolution 15 (4). https://doi.org/10.1093/gbe/evad035.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, and scientists around the world are currently studying the virus intensively in order to fight against the on-going pandemic of the virus. To do so, SARS-CoV-2 is typically grown in the lab to generate viral stocks for various kinds of experimental investigations. However, accumulating evidence suggests that such viruses often undergo cell culture adaptation. Here, we systematically explored cell culture adaptation of two SARS-CoV-2 variants, namely the B.1.36.16 variant and the AY.30 variant, a sub lineage of the B.1.617.2 (Delta) variant, propagated in three different cell lines, including Vero E6, Vero E6/TMPRSS2, and Calu-3 cells. Our analyses detected numerous potential cell culture adaptation changes scattering across the entire virus genome, many of which could be found in naturally circulating isolates. Notable ones included mutations around the spike glycoprotein's multibasic cleavage site, and the Omicron-defining H655Y mutation on the spike glycoprotein, as well as mutations in the nucleocapsid protein's linker region, all of which were found to be Vero E6-specific. Our analyses also identified deletion mutations on the non-structural protein 1 and membrane glycoprotein as potential Calu-3-specific adaptation changes. S848C mutation on the non-structural protein 3, located to the protein's papain-like protease domain, was also identified as a potential adaptation change, found in viruses propagated in all three cell lines. Our results highlight SARS-CoV-2 high adaptability, emphasize the need to deep-sequence cultured viral samples when used in intricate and sensitive biological experiments, and illustrate the power of experimental evolutionary study in shedding lights on the virus evolutionary landscape.

2022

Yang, Z.-S., W.-H. Wang, Y.-T. Lin, C.-Y. Lin, A. N. Urbina, A. Thitithanyanont, P.-L. Lu, Y.-H. Chen, and S.-F. Wang. 2022. DC-SIGN and Galectin-3 Individually and Collaboratively Regulate H5N1 and H7N9 Avian Influenza a Virus Infection via Interaction With Viral Envelope Hemagglutinin Protein. Glycobiology .

DC-SIGN and Galectin-3 are two different lectins and have been reported to participate in regulation of several virus infections. WHO has pointed that H5N1 and H7N9 avian influenza viruses (AIVs) play continuous threats to global health. AIV hemagglutinin (HA) protein, a highly glycosylated protein, mediated influenza infection and was proposed to have DC-SIGN and Gal3 interactive domains. This study aims to address the individual and collaborative roles of DC-SIGN and Gal3 toward AIVs infection. Firstly, A549 cells with DC-SIGN expression or Gal3-knockdown, via lentiviral vector-mediated CD209 gene expression or LGALS-3 gene knockdown, respectively were generated. Quantitative Reverse Transcription PCR (qRT-PCR) results indicated that DC-SIGN expression and Gal3 knockdown in A549 cells were significantly promoted and ameliorated HA or NP gene expression, respectively after H5N1 and H7N9-reverse genetics (RG) virus post-infections (P < 0.05). Similar results observed in immunoblotting, indicating that DC-SIGN expression significantly facilitated H5N1-RG and H7N9-RG infections (P < 0.05) whereas Gal3 knockdown significantly reduced both viral infections (P < 0.05). Furthermore, we found that DC-SIGN and Gal3 co-expression significantly enhanced infectivity of both H5N1-RG and H7N9-RG viruses (P < 0.01) and higher regulatory capabilities by DC-SIGN and Gal3 in H5N1-RG than H7N9-RG was noted. The promoting effect mainly relied on exogenous Gal3 and DC-SIGN directly interacting with the HA protein of H5N1 or H7N9 AIVs, subsequently enhancing virus infection. This study sheds light on two different lectins individually and collaboratively regulating H5N1 and H7N9 AIVs infection and the inhibitors against DC-SIGN and Gal3 interacting with HA could be utilized as alternative antiviral strategies.

Kongsomros, S., N. Pongsakul, J. Panachan, L. Khowawisetsut, J. Somkird, C. Sangma, T. Kanjanapruthipong, P. Wongtrakoongate, A. Chairoungdua, and K. Pattanapanyasat. 2022. Comparison of Viral Inactivation Methods on the Characteristics of Extracellular Vesicles from SARS‐CoV‐2 Infected Human Lung Epithelial Cells. Journal of Extracellular Vesicles.

The interaction of SARS-CoV-2 infection with extracellular vesicles (EVs) is of particular interest at the moment. Studying SARS-CoV-2 contaminated-EV isolates in instruments located outside of the biosafety level-3 (BSL-3) environment requires knowing how viral inactivation methods affect the structure and function of extracellular vesicles (EVs). Therefore, three common viral inactivation methods, ultraviolet-C (UVC; 1350 mJ/cm2), β-propiolactone (BPL; 0.005%), heat (56°C, 45 min) were performed on defined EV particles and their proteins, RNAs, and function. Small EVs were isolated from the supernatant of SARS-CoV-2-infected human lung epithelial Calu-3 cells by stepwise centrifugation, ultrafiltration and qEV size-exclusion chromatography. The EV isolates contained SARS-CoV-2. UVC, BPL and heat completely abolished SARS-CoV-2 infectivity of the contaminated EVs. Particle detection by electron microscopy and nanoparticle tracking was less affected by UVC and BPL than heat treatment. Western blot analysis of EV markers was not affected by any of these three methods. UVC reduced SARS-CoV-2 spike detectability by quantitative RT-PCR and slightly altered EV-derived β-actin detection. Fibroblast migration-wound healing activity of the SARS-CoV-2 contaminated-EV isolate was only retained after UVC treatment. In conclusion, specific viral inactivation methods are compatible with specific measures in SARS-CoV-2 contaminated-EV isolates. UVC treatment seems preferable for studying functions of EVs released from SARS-CoV-2 infected cells.

Shanmugaraj, B., N. Khorattanakulchai, C. Panapitakkul, A. Malla, R. Im-erbsin, M. Inthawong, P. Sunyakumthorn, T. Hunsawong, C. Klungthong, and M. C. Reed. 2022. Preclinical Evaluation of a Plant-Derived SARS-CoV-2 Subunit Vaccine: Protective Efficacy, Immunogenicity, Safety, and Toxicity. Vaccine.

Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prevention of SARS-CoV-2 transmission has become a global priority. Previously, we showed that a protein subunit vaccine that was developed based on the fusion of the SARS-CoV-2 receptor-binding domain (RBD) to the Fc portion of human IgG1 (RBD-Fc), produced in Nicotiana benthamiana, and adjuvanted with alum, namely, Baiya SARS-CoV-2 Vax 1, induced potent immunological responses in both mice and cynomolgus monkeys. Hence, this study evaluated the protective efficacy, safety, and toxicity of Baiya SARS-CoV-2 Vax 1 in K18-hACE2 mice, monkeys and Wistar rats. Two doses of vaccine were administered three weeks apart on Days 0 and 21. The administration of the vaccine to K18-hACE2 mice reduced viral loads in the lungs and brains of the vaccinated animals and protected the mice against challenge with SARS-CoV-2. In monkeys, the results of safety pharmacology tests, general clinical observations, and a core battery of studies of three vital systems, namely, the central nervous, cardiovascular, and respiratory systems, did not reveal any safety concerns. The toxicology study of the vaccine in rats showed no vaccine-related pathological changes, and all the animals remained healthy under the conditions of this study. Furthermore, the vaccine did not cause any abnormal toxicity in rats and was clinically tolerated even at the highest tested concentration. In addition, general health status, body temperature, local toxicity at the administration site, hematology, and blood chemistry parameters were also monitored. Overall, this work presents the results of the first systematic study of the safety profile of a plant-derived vaccine, Baiya SARS-CoV-2 Vax 1; this approach can be considered a viable strategy for the development of vaccines against COVID-19.